points obtained. (Table E6.4) For example, for adults in whom only one of the four conditions was present, the predicted survival was 67-72% at 1 year. If all 5 conditions were present, estimated survival was 6% at 1 year. Using this model we have suggested that patients with a score of 4 or 5 (predicted survival < 40% at 1 year) be considered poor retransplant candidates.

Application of this model will theoretically result in improved overall survival following retransplantation and an increase in the efficiency of organ utilization. This would entail excluding from retransplantation a significant percentage of patients currently being transplanted. As with other organs, we do not recommend that these rules be applied to pediatric patients. In addition, in cases of rapid graft failure due to primary non-function or technical difficulties, a transplant surgeon would likely be more compelled to retransplant the patient despite all the evidence pointing to a poorer outcome.

In the year 2002, UNOS modified the liver allocation algorithm in an attempt to de-emphasize waiting time and promote allocation based on disease severity. To accomplish this, disease severity was estimated using a formula (MELD score) initially found to be predictive of 3 month survival in patients with end-stage liver disease who were undergoing TIPS procedure.13 Further analysis found that it was also predictive of survival in patients awaiting liver transplantation. An analogous formula was developed for predicting survival of children awaiting transplant (PELD score). Although it might be assumed that an allocation schema more based on disease severity than waiting time would favor patients in need of retransplantation because of their severity of illness, this remains to be proven. Additional analysis of this unique subgroup of patients is required to determine whether their interests are appropriately served by the recent modification in liver allocation.

0 0

Post a comment