Conclusions And Future Direction

The Ig superfamily member SynCAM 1 functions in synaptic differentiation during early postnatal developmental stages and is sufficient to drive the formation of presynaptic specializations. Concurrently, SynCAM 1 promotes neurotransmission between neurons and exerts this activity specifically at glutamatergic synapses in the CNS. Only the neurexin/neuroligin adhesion system shares similar functions. Thus, these synaptic adhesion molecules not only bridge the synaptic cleft, but can also initiate subsequent steps of synapse formation. SynCAM 1 has been identified in additional physiological contexts, which could provide new directions in understanding this gene family. For example, SynCAM 1 may have neuroimmunological roles, as indicated by the fact that it engages in adhesion of neurites to mast cells49. SynCAM 1 also appears to have tumor suppressor activity28, which could be due to roles of this adhesion molecule in cell migration and differentiation. However, the best understood functions of SynCAM 1 to date are in synaptic differentiation.

Three key questions are the focus of current studies of SynCAM 1 in synaptogenesis. First, what are the intracellular interaction partners of SynCAM 1 that signal and organize the formation of synaptic membrane specializations? Several intracellular candidate proteins are known to interact with SynCAM 1, but the extent to which they function downstream remains to be investigated. Furthermore, it is likely that other adaptor and signaling molecules bind SynCAM 1, and their identification and characterization will prove critical for understanding SynCAM 1 function. Second, the extracellular interactions of SynCAM 1 need to be characterized in molecular detail. These studies will identify the extracellular partners of SynCAM 1 beyond its own homophilic binding. Candidate extracellular interacting proteins include the other SynCAM family members. Future questions will also include whether these Ig domain-mediated interactions are regulated by N- and O-glycosylation of the SynCAM 1 extracellular domain. Third, the physiological functions of SynCAM 1 in the brain will have to be further characterized using a combination of in vitro and in vivo approaches, notably mouse genetics.

These studies can lead to insights not only into the roles of SynCAM 1 in synapse induction, but also in other aspects of synaptic differentiation. The possibility that SynCAM 1 exerts functions subsequent to synapse induction is indicated by the fact that it remains expressed in adult animals after the peak of synaptogenesis has occurred. It is conceivable that SynCAM 1 promotes maturation and stability of synapses after they are formed. SynCAM 1 therefore could affect synaptic plasticity subsequent to triggering synapse formation. Since SynCAM 1 is the representative member of a small family of four highly conserved vertebrate genes expressed in the developing brain, their characterization may provide further insights into mechanisms of target recognition, synaptic specificity, and synapse differentiation mediated by these Ig superfamily members. Future studies are expected to throw light on the roles of SynCAM proteins at developing synapses and on the extent to which they affect synaptic function.


1. Fletcher, T.L., Cameron, P., De Camilli, P., and Banker, G. (1991) J Aeurosci 11, 1617-1626.

2. Williams, A.F., and Barclay, A.N. (1988) Ann Rev Immunol 6, 381-405.

3. Rougon, G., and Hobert, O. (2003) Ann Rev Aeurosci 26, 207-238.

4. Tessier-Lavigne, M., and Goodman, C.S. (1996) Science 274, 1123-1133.

5. Walsh, F.S., and Doherty, P. (1997) Ann Rev Cell Developl Biol 13, 425-456.

6. Yu, T.W., and Bargmann, C.I. (2001) Nat Neurosci 4, 1169-1176.

7. Bastiani, M.J., Harrelson, A.L., Snow, P.M., and Goodman, C.S. (1987) Cell 48, 745-755.

8. Harrelson, A.L., and Goodman, C.S. (1988) Science 242, 700-708.

9. Schuster, C.M., Davis, G.W., Fetter, R.D., and Goodman, C.S. (1996) Neuron 17, 641-654.

10. Stewart, B.A., Schuster, C.M., Goodman, C.S., and Atwood, H.L. (1996) J Neurosci 16, 3877-3886.

11. Davis, G.W., Schuster, C.M., and Goodman, C.S. (1997) Neuron 19, 561-573.

12. Baines, R.A., Seugnet, L., Thompson, A., Salvaterra, P.M., and Bate, M. (2002) J Neurosci 22, 6587-6595.

13. Shen, K., and Bargmann, C.I. (2003) Cell 112, 619-630.

14. Shen, K., Fetter, R.D., and Bargmann, C.I. (2004) Cell 116, 869-881.

15. Yamagata, M., Weiner, J.A., and Sanes, J.R. (2002) Cell 110, 649-660.

16. Nguyen, T., and Südhof, T.C. (1997) JBiol Chem 272, 26032-26039.

17. Scheiffele, P., Fan, J., Choih, J., Fetter, R., and Serafini, T. (2000) Cell 101, 657-669.

18. Dean, C., Scholl, F.G., Choih, J., DeMaria, S., Berger, J., Isacoff, E., and Scheiffele, P. (2003) Nature Neurosci 6, 708-716.

19. Graf, E.R., Zhang, X., Jin, S.-X., Linhoff, M.W., and Craig, A.M. (2004) Cell 119, 1013-1026.

20. Chih, B., Engelman, H., and Scheiffele, P. (2005) Science, 1324-1328.

21. Levinson, J.N., Chery, N., Huang, K., Wong, T.P., Gerrow, K., Kang, R., Prange, O., Wang, Y.T., and El-Husseini, A. (2005) J Biol Chem 280, 17312-17319.

22. Biederer, T., Sara, Y., Mozhayeva, M., Atasoy, D., Liu, X., Kavalali, E.T., and Südhof, T.C. (2002) Science 297, 1525-1531.

23. Hung, A.Y., and Sheng, M. (2002) J Biol Chem 277, 5699-5702.

24. Montgomery, J.M., Zamorano, P.L., and Garner, C.C. (2004) Cell Molec Life Sci 61, 911-929.

25. Kim, E., and Sheng, M. (2004) Nat Rev Neurosci 5, 771-781.

26. Gomyo, H., Arai, Y., Tanigami, A., Murakami, Y., Hattori, M., Hosoda, F., Arai, K., Aikawa, Y., Tsuda, H., Hirohashi, S., Asakawa, S., Shimizu, N., Soeda, E., Sakaki, Y., and Ohki, M. (1999) Genomics 62, 139-146.

27. Pletcher, M.T., Nobukuni, T., Fukuhara, H., Kuramochi, M., Maruyama, T., Sekiya, T., Sussan, T., Isomura, M., Murakami, Y., and Reeves, R.H. (2001) Gene 273, 181-189.

28. Kuramochi, M., Fukuhara, H., Nobukuni, T., Kanbe, T., Maruyama, T., Ghosh, H.P., Pletcher, M., Isomura, M., Onizuka, M., Kitamura, T., Sekiya, T., Reeves, R.H., and Murakami, Y. (2001) Nat Genet 27, 427-430.

29. Wakayama, T., Ohashi, K., Mizuno, K., and Iseki, S. (2001) Molec ReprodDevelop 60, 158-164.

30. Urase, K., Soyama, A., Fujita, E., and Momoi, T. (2001) Neuroreport 12, 3217-3221.

32. Biederer, T., and colleagues, unpublished observation.

33. Hoover, K.B., and Bryant, P.J. (2000) Curr Opin Cell Biol 12, 229-234.

34. Marfatia, S.M., Leu, R.A., Branton, D., and Chishti, A.H. (1995) J Biol Chem 270, 715-719.

35. Hemming, N.J., Anstee, D.J., Staricoff, M.A., Tanner, M.J., and Mohandas, N. (1995) J Biol Chem 270, 5360-5366.

36. Workman, R.F., and Low, P.S. (1998) J Biol Chem 273, 6171-6176.

37. Biederer, T., and Südhof, T.C. (2001) J Biol Chem 276, 47869-47876.

38. Songyang, Z., Fanning, A.S., Fu, C., Xu, J., Marfatia, S.M., Chishti, A.H., Crompton, A., Chan, A.C., Anderson, J.M., and Cantley, L.C. (1997) Science 275, 73-77.

39. Fukami, T., Satoh, H., Fujita, E., Maruyama, T., Fukuhara, H., Kuramochi, M., Takamoto, S., Momoi, T., and Murakami, Y. (2002) Gene 295, 7-12.

40. Fiala, J.C., Feinberg, M., Popov, V., and Harris, K.M. (1998) J Neurosci 18, 8900-8911.

41. Harris, K.M., Jensen, F.E., and Tsao, B. (1992) J Neurosci 12, 2685-2705.

42. Sara, Y., Biederer, T., Atasoy, D., Chubykin, A., Mozhayeva, M.G., Südhof, T.C., and Kavalali, E.T. (2005) J Neurosci 25, 260-270.

43. Fletcher, T.L., De Camilli, P., and Banker, G. (1994) J Neurosci 14, 6695-6706.

44. Rizzoli, S.O., Richards, D.A., and Betz, W.J. (2003) J Neurocyt 32, 539-549.

45. Mozhayeva, M.G., Sara, Y., Liu, X.R., and Kavalali, E.T. (2002) J Neurosci 22, 654-665.

46. Biederer, T., and Südhof, T.C. (2000) J Biol Chem 275, 39803-39806.

47. Butz, S., Okamoto, M., and Südhof, T.C. (1998) Cell 94, 773-782.

48. Tabuchi, K., Biederer, T., Butz, S., and Südhof, T.C. (2002) J Neurosci 22, 4264-4273.

49. Furuno, T., Ito, A., Koma, Y.-I., Watabe, K., Yokozaki, H., Bienenstock, J., Nakanishi, M., and Kitamura, Y. (2005) J Immunol 174, 6934-6942.

Was this article helpful?

0 0
Single Parenting

Single Parenting

Finally! You Can Put All Your Worries To Rest! You Can Now Instantly Learn Some Little-Known But Highly Effective Tips For Successful Single Parenting! Understand Your Role As A Single Motherfather, And Learn How To Give Your Child The Love Of Both Parents Single Handedly.

Get My Free Ebook

Post a comment