Conclusion Of Status Epilepyicus

Panic Away

Panic Away Program

Get Instant Access

Acute seizures can be induced by administration of chemoconvulsant drugs via different delivery routes (sub-Q, IP, IV, ICV, or inhalation). Main categories of convulsant drugs used for the production of acute seizures affect the inhibitory (GABA or glycine) transmission, affect excitatory amino acid transmission, or act on ACh receptors. The seizures are primarily or secondarily generalized, and some of their behavioral, EEG, metabolic, and neuropathologic features are age specific. An additional possibility for the induction of acute focal seizures is implantation of convul-sant substances into the sensitive brain regions (e.g., neo-cortex, hippocampus, or area tempestas). For this purpose, convulsant metals, convulsant drugs, or antibiotics with con-vulsant features can be used. Acute behavioral seizures emanating from an altered GABAergic system represent models of myoclonic seizures and generalized tonic-clonic seizures; rhythmic EEG activity associated with behavioral arrest corresponds to absence seizures. Seizures that are due to hyper-activation of the EAA system may help with models of special seizure syndromes, especially catastrophic epilepsies of childhood. Some of the EAA-based models (such as NMDA seizures) are resistant to antiepileptic drug therapy; thus they may be useful for screening the drugs that are potentially effective in refractory epilepsy.


Ableitner, A., and Herz, A. 1987. Changes in local cerebral glucose utilization induced by the beta-carbolines FG 7142 and DMCM reveal brain structures involved in the control of anxiety and seizure activity. J Neurosci 7: 1047-1055. Albala, B.J., Moshe, S.L., and Okada, R. 1984. Kainic-acid-induced seizures: a developmental study. Dev Brain Res 13: 139-148. Allen, C.N. 2000. Strychnine. In Experimental and Clinical Neurotoxicol-ogy. Eds. P.S. Spencer, and H.H. Schaumburg. pp. 1114—1115. New York: Oxford University Press. Anderson, A.E., Hrachovy, R.A., Antalffy, B.A., Armstrong, D.L., and Swann, J.W. 1999. A chronic focal epilepsy with mossy fiber sprouting follows recurrent seizures induced by intrahippocampal tetanus toxin injection in infant rats. Neuroscience 92: 73—82. Andre, V., Pineau, N., Motte, J. E., Marescaux, C., and Nehlig, A. 1998. Mapping of neuronal networks underlying generalized seizures induced by increasing doses of pentylenetetrazol in the immature and adult rat: a c-Fos immunohistochemical study. Eur J Neurosci 10: 2094— 2106.

Araki, H., Kobayashi, Y., Hashimoto, Y., Futagami, K., Kawasaki, H., and Gomita, Y. 2002. Characteristics of flurothyl-induced seizures and the effect of antiepileptic drugs on flurothyl-induced seizures in Mongolian gerbils. Pharmacol Biochem Behav 74: 141—147.

Ashton, D., and Wauquier, A. 1979. Effects of some antiepileptic, neu-roleptic and gabaminergic drugs on convulsions induced by D, L-allyl-glycine. Pharm Biochem Behav 11: 221—226.

Ashton, D., and Wauquier, A. 1981. Alpha-noradrenaline modulation of D,L-allylglycine seizures. Eur J Pharmacol 75: 71—74.

Auer, R.N., and Siesjo, B.K. 1988. Biological differences between ischemia, hypoglycemia and epilepsy. Ann Neurol 24: 699—707.

Auer, R.N., and Siesjo, B.K. 1993. Hypoglycaemia: brain neurochemistry and neuropathology. Baillieres Clin Endocrinol Metab 7: 611—625.

Auer, R.N., Wieloch, T., Olsson, Y., and Siesjo, B.K. 1984. The distribution of hypoglycemic brain damage. Acta Neuropathol (Berl) 64: 177—191.

Ayala, G.F., Lin, S., and Vasconetto, C. 1970. Penicillin as epileptogenic agent: its effect on an isolated neuron. Science 167: 1257—1260.

Ben-Ari, Y. 1985. Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14: 375—403.

Ben-Ari, Y., Tremblay, E., and Ottersen, O.P. 1980. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience 5: 515—528.

Ben-Ari, Y., Riche, D., Tremblay, E., and Charton, G. 1981a. Alterations in local glucose consumption following systemic administration of kainic acid, bicuculline or metrazol. Eur Neurol 20: 173—175.

Ben-Ari, Y., Tremblay, E., Berger, M., and Nitecka, L. 1984. Kainic acid seizure syndrome and binding sites in developing rats. Dev Brain Res 14: 284—288.

Ben-Ari, Y., Tremblay, E., Riche, D., Ghilini, G., and Naquet, R. 1981b. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: Metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6: 1361—1391.

Blennow, G., Folbergrova, J., Nilsson, B., and Siesjo, B.K. 1979. Cerebral metabolic and circulatory changes in the rat during sustained seizures induced by DL-homocysteine. Brain Res 179: 129—146.

Brabcova, R., Kubova, H., Velisek, L., and Mares, P. 1993. Effects of benzodiazepine, bretazenil (Ro 16-6028), on rhythmic metrazol EEG activity: comparison with standart anticonvulsants. Epilepsia 34: 1135—1140.

Braestrup, C., and Nielsen, M. 1982. Beta-carbolines and benzodiazepine receptors. Prog Clin Biol Res 90: 227—231.

Braestrup, C., Nielsen, M., and Olsen, C.E. 1980. Urinary and brain beta-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Proc Natl Acad Sci U S A 77: 2288—2292.

Braestrup, C., Schmiechen, R., Neef, G., Nielsen, M., and Petersen, E.N.

1982. Interaction of convulsive ligands with benzodiazepine receptors. Science 216: 1241—1243.

Braestrup, C., Nielsen, M., Honore, T., Jensen, L.H., and Petersen, E.N.

1983. Benzodiazepine receptor ligands with positive and negative efficacy. Neuropharmacology 22: 1451—1457.

Brandt, C., Potschka, H., Loscher, W., and Ebert, U. 2003. N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. Neuroscience 118: 727—740.

Budziszewska, B., Siwanowicz, J., Leskiewicz, M., Jaworska-Feil, L., and Lason, W. 1998. Protective effects of neurosteroids against NMDA-induced seizures and lethality in mice. Eur Neuropsychopharmacol 8: 7—12.

Campbell, A.M., and Holmes, O. 1984. Bicuculline epileptogenesis in the rat. Brain Res 323: 239—246.

Cavalheiro, E.A., Silva, D.F., Turski, W.A., Calderazzo-Filho, L.S., Bortolotto, Z.A., and Turski, L. 1987. The susceptibility of rats to pilo-carpine-induced seizures is age-dependent. Dev Brain Res 465: 43-58.

Cavalheiro, L.A., Riche, D.A., and Le Gal La Salle, G. 1982. Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. Electroencephalogr Clin Neu-rophysiol 53: 581-589.

Cendes, F., Andermann, F., Carpenter, S., Zatorre, R.J., and Cashman, N.R. 1995. Temporal lobe epilepsy caused by domoic acid intoxication: evidence for glutamate receptor-mediated excitotoxicity in humans. Ann Neurol 37: 123-126.

Chang, J.H., Yang, X.F., Zempel, J.M., and Rothman, S.M. 2004. The unilateral cobalt wire model of neocortical epilepsy: a method of producing subacute focal seizures in rodents. Epilepsy Res 61: 153-160.

Chapman, A.G., Cheetham, S.C., Hart, G.P., Meldrum, B.S., and Westerberg, E. 1985. Effects of two convulsant beta-carboline derivatives, DMCM and beta-CCM, on regional neurotransmitter amino acid levels and on in vitro D-[3H]aspartate release in rodents. J Neurochem 45: 370-381.

Chapman, A.G., De Sarro, G.B., Premachandra, M., and Meldrum, B.S. 1987. Bidirectional effects of beta-carbolines in reflex epilepsy. Brain Res Bull 19: 337-346.

Chen, R.-C., Huang, Y.-H., and How, S.-W. 1986. Systemic penicillin as an experimental model of epilepsy. Exp Neurol 92: 533-540.

Cherubim, E., DeFeo, M.R., Mecarelli, O., and Ricci, G.F. 1983. Behavioral and electrograhic patterns induced by systemic administration of kainic acid in developing rats. Dev Brain Res 9: 69-77.

Chu, N.S. 1981. Caffeine- and aminophylline-induced seizures. Epilepsia 22: 85-94.

Clifford, D.B., Olney, J.W., Maniotis, A., Collins, R.C., and Zorumski, C.F. 1987. The functional anatomy and pathology of lithium-pilocarpine and high- dose pilocarpine seizures. Neuroscience 23: 953-968.

Colasanti, B.K., and Craig, C.R. 1992. Reduction of seizure frequency by clonazepam during cobalt experimental epilepsy. Brain Res Bull 28: 329-331.

Collins, M.A., and Neafsey, E.J. 2000. Carbolines and Isoquinones. In Experimental and Clinical Neurotoxicology. Eds. P.S. Spencer, and H.H. Schaumburg. pp 304-314. New York: Oxford University Press.

Collins, R.C., McLean, M., and Olney, J. 1980. Cerebral metabolic response to systemic kainic acid: 14-C-deoxyglucose studies. Life Sci 27: 855-862.

Cooper, R.M., and Legare, C. 1997. Effects of neocortical implants of cobalt and other seizure-inducing metals on brain C-14 2-deoxyglucose uptake. Epilepsy Res 27: 13-28.

Cooper, R.M., Legare, C.E., and Campbell Teskey, G. 2001. Changes in (14)C-labeled 2-deoxyglucose brain uptake from nickel-induced epileptic activity. Brain Res 923: 71-81.

Cornblath, M., and Schwartz, R. 1991. Disorders of Carbohydrate Metabolism in Infancy. Boston: Blackwell Scientific Publications.

Craig, C.R., and Colasanti, B.K. 1992. Reduction of frequency of seizures by carbamazepine during cobalt experimental epilepsy in the rat. Pharmacol Biochem Behav 41: 813-816.

Croucher, M., De Sarro, G., Jensen, L., and Meldrum, B. 1984. Behavioural and convulsant actions of two methyl esters of beta-carboline-3-carboxylic acid in photosensitive baboons and in DBA/2 mice. Eur J Pharmacol 104: 55-60.

Curtis, D.R., Duggan, A.W., and Johnston, G.A. 1971. The specificity of strychnine as a glycine antagonist in the mammalian spinal cord. Exp Brain Res 12: 547-565.

Dambinova, S.A., Granstrem, O.K., Tourov, A., Salluzzo, R., Castello, F., and Izykenova, G.A. 1998. Monitoring of brain spiking activity and autoantibodies to N-terminus domain of GluR1 subunit of AMPA receptors in blood serum of rats with cobalt-induced epilepsy. J Neurochem 71: 2088-2093.

Davis, E.A., Keating, B., Byrne, G.C., Russell, M., and Jones, T.W. 1997. Hypoglycemia: incidence and clinical predictors in a large population-based sample of children and adolescents with IDDM. Diabetes Care 20: 22-25.

de Casrilevitz, M., Engelhardt, E., and Esberard, C. 1971. Maturation of convulsogenic activity induced by leptazol in the albino rat. Br J Pharmacol 42: 31-42.

De Deyn, P.P., D'Hooge, R., Marescau, B., and Pei, Y.Q. 1992. Chemical models of epilepsy with some reference to their applicability in the development of anticonvulsants. Epilepsy Res 12: 87-110.

de Feo, M., Mecarelli, O., and Ricci, G. 1985. Bicuculline-and allyglycine-induced epilepsy in developing rats. Exp Neurol 90: 411-421.

Depaulis, A., Snead, O.C.I., Marescaux, C., and Vergnes, M. 1989. Sup-pressive effects of intranigral injection of muscimol in three models of generalized non-convulsive epilepsy induced by chemical agents. Brain Res 498: 64-72.

Dingledine, R., and Gjerstad, L. 1980. Reduced inhibition during epilepti-form activity in the in vitro hippocampal slice. J Physiol 305: 297-313.

Doi, T., Ueda, Y., Tokumaru, J., Mitsuyama, Y., and Willmore, L.J. 2000. Sequential changes in glutamate transporter mRNA levels during Fe(3+)-induced epileptogenesis. Brain Res Mol Brain Res 75: 105-112.

Eger, E. I. II, Gong, D., Xing, Y., Raines, D.E., and Flood, P. 2002. Acetyl-choline receptors and thresholds for convulsions from flurothyl and 1,2-dichlorohexafluorocyclobutane. Anesth Analg 95: 1611-1615.

Eng, R.H.K., Munsif, A.N., Yangco, B.G., Smith, S.M., and Chmel, H. 1989. Seizure propensity with imipenenm. Arch Intern Med 149: 1881-1883.

Engel, J., Jr. 2001. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 42: 796-803.

Evans, M.C., and Meldrum, B.S. 1984. Regional brain glucose metabolism in chemically-induced seizures in the rat. Brain Res 297: 235-245.

Fagg, G., Foster, A., and Ganong, A. 1986. Excitatory amino acid synap-tic mechanism and neurological function. Trends Pharmacol Sci 7: 357-363.

Fariello, R.G., Golden, G.T., and Pisa, M. 1980. Homotaurine antagonizes the neurotoxic and convulsant action of systemically administered kainic acid (KA). Neurology 30: 386.

Finnerty, G.T., and Jefferys, J.G. 2002. Investigation of the neuronal aggregate generating seizures in the rat tetanus toxin model of epilepsy. J Neurophysiol 88: 2919-2927.

Fisher, R.S. 1989. Animal models of epilepsies. Brain Res Rev 14: 245-278.

Folbergrova, J., Haugvicova, R., and Mares, P. 2000. Behavioral and metabolic changes in immature rats during seizures induced by homocysteic acid: the protective effect of NMDA and non-NMDA receptor antagonists. Exp Neurol 161: 336-345.

Fuller, T.A., and Olney, J.W. 1979. Effects of morphine and naloxone on kainic acid neurotoxicity. Life Sci 24: 1793-1798.

Gale, K. 1995. Chemoconvulsant seizures: advantages of focally-evoked seizure models. Ital J Neurol Sci 16: 17-25.

Gatt, A., Veliskova, J., Liu, Z., Moshe, S.L., and Holmes, G.L. 1993. Ontogeny of flurothyl-induced seizures: A behavioral and EEG elec-troencephalogrpahic analysis. Epilepsia 34(Suppl 6): 63.

Giorgi, F.S., Malhotra, S., Hasson, H., Veliskova, J., Rosenbaum, D., and Moshe, S.L. 2005. Effects of status epilepticus early in life on susceptibility to ischemic injury in adulthood. Epilepsia. 46: 490-498.

Gloor, P., and Testa, G. 1974. Generalized penicillin epilepsy in the cat: Effect of intracarotid and intravertebral pentylenetetrazol and amobar-bital injections. Electroencephalogr Clin Neurophysiol 36: 499-515.

Griffin, J.W., and Oyler, G. 2000. Tetanospasmin. In Experimental and Clinical Neurotoxicology. Eds. P.S. Spencer, and H.H. Schaumburg. pp 1143-1148. New York: Oxford University Press.

Grondahl, T.O. and Langmoen, I.A. 1993. Epileptogenic effect of antibiotic drugs. JNeurosurg 78: 938-943.

Gutnick, M.J., Van Duijn, H., and Citri, N. 1976. Relative convulsant potencies of structural analogues of penicillin. Brain Res 114: 139-143.

Haas, K.Z., Sperber, E.F., Opanashuk, L.A., Stanton, P.K., and Moshe, S.L. 2001. Resistance of the immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Hippocampus 11: 615-625.

Halonen, T., Tortorella, A., Zrebeet, H., and Gale, K. 1994. Posterior piri-form and perirhinal cortex relay seizures evoked from the area tempestas: role of excitatory and inhibitory amino acid receptors. Brain Res 652: 145-148.

Hamani, C., and Mello, L.E. 1997. Status epilepticus induced by pilo-carpine and picrotoxin. Epilepsy Res 28: 73-82.

Hamani, C., and Mello, L.E. 2002. Spontaneous recurrent seizures and neuropathology in the chronic phase of the pilocarpine and picrotoxin model epilepsy. Neurol Res 24: 199-209.

Harrison, N.L., and Simmonds, M.A. 1983. The picrotoxin-like action of a convulsant benzodiazepine, Ro5-3663. Eur J Pharmacol 87: 155-158.

Haut, S.R., Veliskova, J., and Moshe, S.L. 2004. Susceptibility of immature and adult brains to seizure effects. Lancet Neurol 3: 608-617.

Hayashi, T. 1952. A physiological study of epileptic seizures following cortical stimulation in animals and its aplication to human clinics. Jap J Pharmacol 3: 46-64.

Heggli, D.E., and Malthe-Sorenssen, D. 1982. Systemic injection of kainic acid: effect on neurotransmitter markers in piriform cortex, amygdaloid complex and hippocampus and protection by cortical lesioning and anti-convulsants. Neuroscience 7: 1257-1264.

Hiscock, J.J., MacKenzie, L., and Willoughby, J.O. 1996. Fos induction in subtypes of cerebrocortical neurons following single picrotoxin-induced seizures. Brain Res 738: 301-312.

Horton, R.W., and Meldrum, B.S. 1973. Seizures induced by allylglycine, 3-mercaptopropionic acid and 4-deoxypyridoxine in mice and photosensitive baboons, and different modes of inhibition of cerebral glu-tamic acid decarboxylase. Br J Pharmacol 49: 52-63.

Huang, L., Cilio, M.R., Silveira, D.C., McCabe, B.K., Sogawa, Y., Stafstrom, C.E., and Holmes, G.L. 1999. Long-term effects of neonatal seizures: a behavioral, electrophysiological, and histological study. Brain Res Dev Brain Res 118: 99-107.

Insel, T.R., Miller, R.P., and Gelhard, R.E. 1990. The ontogeny of excitatory amino acid receptors in rat forebrain. I. N-methyl-D-aspartate receptors and quisqualate receptors. Neuroscience 35: 31-43.

Ishimoto, T., Omori, N., Mutoh, F., and Chiba, S. 2000. Convulsive seizures induced by N-methyl-D-aspartate microinjection into the mesen-cephalic reticular formation in rats. Brain Res 881: 152-158.

Jefferys, J.G., and Williams, S.F. 1987. Physiological and behavioural consequences of seizures induced in the rat by intrahippocampal tetanus toxin. Brain 110: 517-532.

Jensen, F.E., Firkusny, I.R., and Mower, G.D. 1993. Differences in c-fos immunoreactivity due to age and mode of seizure induction. Mol Brain Res 17: 185-193.

Jensen, M.H., Jorgensen, S., Nielsen, H., Sanchez, R., and Andersen, P.K. 1984. Is theophylline-induced seizures in man caused by inhibition of cerebral 5'-nucleotidase activity? Acta Pharmacol Toxicol (Copenh) 55: 331-334.

Jensen, L.H., Petersen, E.N., and Braestrup, C. 1983. Audiogenic seizures in DBA/2 mice discriminate sensitively between low efficacy benzodiazepine receptor agonists and inverse agonists. Life Sci 33: 393-399.

Johnson, H.C., Walker, A.E., Case, T.J., and Kollros, J.J. 1946. Effects of antibiotic substances on the central nervous system. Arch Neurol Psychiatry 56: 184-197.

Jope, R.S., Morrisett, R.A., and Snead III, O.C. 1986. Characterization of lithium potentiation of pilocarpine-induced status epilepticus in rats. Exp Neurol 67: 471-480.

Jurson, P.A., and Freed, W.J. 1990. A slight anticonvulsant effect of CNQX and DNQX as measured by homocysteine- and quisqualate-induced seizures. Pharmacol Biochem Behav 36: 177-181.

Käbovä, R., Liptäkovä, S., Slamberovä, R., Pometlovä, M., and Velisek, L. 1999. Age-specific N-methyl-D-aspartate-induced seizures: perspectives for the West syndrome model. Epilepsia 40: 1357-1369.

Kabuto, H., Yokoi, I., and Ogawa, N. 1998. Melatonin inhibits iron-induced epileptic discharges in rats by suppressing peroxidation. Epilepsia 39: 237-243.

Kamei, C., Sunami, A., and Tasaka, K. 1983. Epileptogenic activity of cephalosporins in rats and their structure activity relationship. Epilepsia 24: 431-439.

Kaufman, F.R. 1998. Diabetes in children and adolescents. Areas of controversy. Med Clin North Am 82: 721-738.

Kopeloff, L.M., Barrera, S.E., and Kopeloff, N. 1942. Recurrent convulsive seizures in animals produced by immunologic and chemical means. Am J Psychol 98: 881-902.

Kopeloff, L.M., Chusid, J.G., and Kopeloff, N. 1954. Chronic experimental epilepsy in Macaca mulatta. Neurology 4: 218-227.

Kubovä, H., and Mares, P. 1994. Effects of MK-801 (dizocilpine) and ketamine on strychnine-induced convulsions in rats: comparison with benzodiazepines and standard anticonvulsants. Physiol Res 43: 313-320.

Kubovä, H., and Maress, P. 1995. Different postnatal development of convulsions and lethality induced by strychnine in rats. Pharmacol Toxicol 77: 219-224.

Kubovä, H., Bohuslav, T., and Maress, P. 1990. Anticonvulsant effects of clonazepam on chemically induced convulsions. Physiol Bohemoslov 39: 459-469.

Kubovä, H., Folbergrovä, J., and Mares, P. 1995. Seizures induced by homocysteine in rats during ontogenesis. Epilepsia 36: 750-756.

Kubovä, H., Druga, R., Lukasiuk, K., Suchomelovä, L., Haugvicovä, R., Jirmanovä, I., and Pitkanen, A. 2001. Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J Neurosci 21: 3593-3599.

Kuhar, M., and Yamamura, H.I. 1976. Localization of cholinergic mus-carinic receptors in rat brain by light microscopic radioautography. Brain Res 110: 229-243.

Lado, F., and Moshe, S.L. 2002. Role of subcortical structures in the pathogenesis of infantile spasms: What are possible subcortical mediators? 2002. In Epilepsy, Infantile Spasms and Developmental Encepahlopa-thy. Eds. P.A. Schwartzkroin and J. Rho. pp. 116-135. New York: Academic Press.

Lamar, C., Jr. 1970. Mercaptopropionic acid: a convulsant that inhibits glutamate decarboxylase. J Neurochem 17: 165-170.

Lees, G.J. 1995. Influence of ketamine on the neuronal death caused by NMDAin the rat hippocampus. Neuropharmacology 34: 411-417.

Lewis, L.D., Ljunggren, B., Ratcheson, R.A., and Siesjo, B.K. 1974. Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG. J Neurochem 23: 673-679.

Löscher, W. 1979. 3-Mercaptopropionic acid: convulsant properties, effects on enzymes of the gamma-aminobutyrate system in mouse brain and antagonism by certain anticonvulsant drugs, aminooxyacetic acid and gabaculine. Biochem Pharmacol 28: 1397-1407.

Löscher, W. 1997. Animal models of intractable epilepsy. Prog Neurobiol 53: 239-258.

Löscher, W., and Schmidt, D. 1988. Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2: 145-181.

Lothman, E.W., and Collins, R.C. 1981. Kainic acid induced limbic seizures: Metabolic, behavioral, electroencephalographic and neu-ropathological correlates. Brain Res 218: 299-318.

Lotti, M. 2000. Organophosphorus Compounds. In Experimental and Clinical Neurotoxicology. Eds. P.S. Spencer, and H.H. Schaumburg. pp. 897-925. New York: Oxford University Press.

Louis, E.D., Williamson, P.D., and Darcey, T.M. 1987. Experimental models of chronic focal epilepsy: a critical review of four models. Yale J Biol Med 60: 255-272.

Ludolph, A.C. 2000a. Allylglycine. In Experimental and Clinical Neuro-toxicology. Eds. P.S. Spencer, and H.H. Schaumburg. pp. 140-141. New York: Oxford University Press.

Ludolph, A.C. 2000b. Bicuculline. In Experimental and Clinical Neuro-toxicology. Eds. P.S. Spencer, and H.H. Schaumburg. pp. 235-236. New York: Oxford University Press.

Ludolph, A.C., and Spencer, P.S. 2000. Picrotoxin. Experimental and Clinical Neurotoxicology. Eds. P.S. Spencer, and H.H. Schaumburg. p. 1004. New York: Oxford University Press.

Mackenzie, L., Medvedev, A., Hiscock, J.J., Pope, K.J., and Willoughby, J.O. 2002. Picrotoxin-induced generalised convulsive seizure in rat: changes in regional distribution and frequency of the power of electroencephalogram rhythms. Clin Neurophysiol 113: 586-596.

Maress, P., and Trojan, S. 1991. Ontogenetic development of isonicotinehy-drazide-induced seizures in rats. Brain Dev 13: 121-125.

Mares, P., and Velisek, L. 1992. N-Methyl-D-aspartate (NMDA)-induced seizures in developing rats. Dev Brain Res 65: 185-189.

Mares, P., Chino, M., Kubova, H., Mathern, P., and Veliky, M. 2000. Con-vulsant action of systemically administered glutamate and bicuculline methiodide in immature rats. Epilepsy Res 42: 183-189.

Maress, P., Folbergrova, J., and Kubova, H. 2004. Excitatory aminoacids and epileptic seizures in immature brain. Physiol Res 53(Suppl 1): S115-S124.

Mares, P., Folbergrova, J., Langmeier, M., Haugvicova, R., and Kubova, H. 1997. Convulsant action of D,L-homocysteic acid and its stereoisomers in immature rats. Epilepsia 38: 767-776.

Mares, P., Hlavata, J., Liskova, K., and Mudrochova, M. 1983. Effects of carbamazepine and diphenylhydantoin on metrazol seizures during ontogenesis in rats. Physiol Bohemoslov 32: 92-96.

Mares, P., Kubova, H., and Czuczwar, S.J. 1994. Aminophylline exhibits convulsant action in rats during ontogenesis. Brain Dev 16: 296-300.

Mares, P., Kubova, H., Zouhar, A., Folbergrova, J., Koryntova, H., and Stankova, L. 1993. Motor and electrocorticographic activity induced by 3-mercaptopropionic acid in immature rats. Epilepsy Res 16: 11-18.

Mares, P., Liskova-Bernaskova, K., and Mudrochova, M. 1987. Ontogenetic development of convulsant action of Ro 5-3663 in the rat. Life Sci 40: 1161-1170.

Maress, P., Maressova, D., and Schickerova, R. 1981. Effect of antiepileptic drugs on metrazol convulsions during ontogenesis in rats. Physiol Bohemoslov 30.

Marescaux, C., Micheletti, G., Vergnes, M., Depaulis, A., Rumbach, L., and Warter, J.M. 1984. A model of chronic spontaneous petit mal-like seizures in the rat: comparison with pentylenetetrazol-induced seizures. Epilepsia 25: 326-331.

Matesjovska, I., Velisskova, J., and Velissek, L. 1998. Bicuculline-induced rhythmic EEG episodes: gender differences and the effects of ethosux-imide- and baclofen-treatment. Epilepsia 39: 1243-1252.

Matsumoto, H., and Ajmonemarsan, C. 1964. Cellular Mechanisms in Experimental Epileptic Seizures. Science 144: 193-194.

McCabe, B.K., Silveira, D.C., Cilio, M.R., Cha, B.H., Liu, X., Sogawa, Y., and Holmes, G.L. 2001. Reduced neurogenesis after neonatal seizures. J Neurosci 21: 2094-2103.

McDonald, J.W., Silverstein, F.S., and Johnston, M.V. 1988. Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res 459: 200-203.

McGeer, E.G., Olney, J.W., and McGeer, P.L. 1978. Kainic acid as a tool in Neurobiology. New York: Raven Press.

Meldrum, B. 1984. GABAergic agents as anticonvulsants in baboons with photosensitive epilepsy. Neurosci Lett 47: 345-349.

Meldrum, B.S., and Chapman, A.G. 1986. Benzodiazepine receptors and their relationship to the treatment of epilepsy. Epilepsia 27(Suppl 1): S3-S13.

Meldrum, B.S., Swan, J.H., Ottersen, O.P., and Storm-Mathisen, J. 1987. Redistribution of transmitter amino acids in rat hippocampus and cerebellum during seizures induced by L-allylglycine and bicuculline: an immunocytochemical study with antisera against conjugated GABA, glutamate and aspartate. Neuroscience 22: 17-27.

Mellanby, J., George, G., Robinson, A., and Thompson, P. 1977. Epilepti-form syndrome in rats produced by injecting tetanus toxin into the hippocampus. J Neurol Neurosurg Psychiatry 40: 404-414.

Miller, L.P., Johnson, A.E., Gelhard, R.E., and Insel, T.R. 1990. The ontogeny of excitatory amino acid receptors in the rat forebrain-II. Kainic acid receptors. Neuroscience 35: 45-51.

Morgan, P.F., and Linnoila, M. 1991. Regional induction of c-fos mRNA by NMDA: a quantitative in-situ hybridization study. Neuroreport 2: 251-254.

Nehlig, A., and de Vasconselos, A.P. 1996. The model of pentylenetetrazol-induced status epilepticus in the immature rat: short- and long-term effects. Epilepsy Res 26: 93-103.

Nehlig, A., Vergnes, M., Marescaux, C., and Boyet, S. 1992. Mapping of cerebral energy metabolism in rats with genetic generalized noncon-vulsive epilepsy. J Neural Transm 35: 141-153.

Nistico, G., Musolino, R., Naccari, F., and Di Perri, R. 1978. Experimental epilepsy in chicks and rats after intravenous benzylpenicillin and cefazolin. Boll Soc Ital Biol Sper 54: 600-605.

Nitecka, L., Tremblay, E., Charton, G., Bouillot, J.P., Berger, M.L., and Ben-Ari, Y. 1984. Maturation of kainic acid seizure-brain damage syndrome in the rat. II Histopathological sequelae. Neuroscience 13: 1073-1094.

Noebels, J.L., and Pedley, T.A. 1977. Anatomic localization of topically applied [14C]penicillin during experimental focal epilepsy in cat neocortex. Brain Res 125: 293-303.

Olsen, R.W. 1981. The GABA postsynaptic membrane receptor-ionophore complex. Site of action of convulsant and anticonvulsant drugs. Mol Cell Biochem 39: 261-279.

Ono, J., Vieth, R., and Walson, P.D. 1990. Electrocorticographical observation of seizures induced by pentylenetetrazol (PTZ) injection in rats. Funct Neurol 5: 345-352.

Orlof, M.J., Williams, H.L., and Pfeiffer, C.C. 1949. Timed intravenous infusion of metrazol and strychnine for testing anticonvulsant drugs. Proc Soc Exp Biol Med 70: 254-257.

Pei, Y.Q., and Koyama, I. 1986. Features of seizures and behavioral changes induced by intrahippocampal injection of zinc sulfate in the rabbit: a new experimental model of epilepsy. Epilepsia 27: 183-188.

Pereira de Vasconcelos, A., el Hamdi, G., Vert, P., and Nehlig, A. 1992. An experimental model of generalized seizures for the measurement of local cerebral glucose utilization in the immature rat. II mapping of the brain metabolism using quantitative [14C]-2-deoxyglucose technique. Dev Brain Res. 69: 243-259.

Pereira de Vasconcelos, A., Boyet, S., Koziel, V., and Nehlig, A. 1995. Effects of pentylenetetrazol-induced status epilepticus on local cerebral blood flow in the developing rat. J Cereb Blood Flow Metab 15: 270-283.

Petersen, E.N. 1983. DMCM: a potent convulsive benzodiazepine receptor ligand. Eur J Pharmacol 94: 117-124.

Pineau, N., Charriaut-Marlangue, C., Motte, J., and Nehlig, A. 1999. Pentylenetetrazol seizures induce cell suffering but not death in the immature rat brain. Brain Res Dev Brain Res 112: 139-144.

Pitkanen, A., and Sutula, T.P. 2002. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 1: 173-181.

Pocecco, M., and Ronfani, L. 1998. Transient focal neurologic deficits associated with hypoglycaemia in children with insulin-dependent diabetes mellitus. Italian Collaborative Paediatric Diabetologic Group. Acta Paediatr 87: 542-544.

Prado de Carvalho, L., Grecksch, G., Cavalheiro, E.A., Dodd, R.H., Chapouthier, G., and Rossier, J. 1984. Characterization of convulsions induced by methyl beta-carboline-3-carboxylate in mice. Eur J Pharmacol 103: 287-293.

Prichard, J.W., Gallagher, B.B., and Glaser, G.H. 1969. Experimental seizure-threshold testing with flurothyl. J Pharmacol Exp Ther 166: 170-178.

Prince, D.A. 1968. The depolarization shift in "epileptic" neurons. Exp Neurol 21: 467-485.

Prince, D.A., and Wilder, B.J. 1967. Control mechanisms in cortical epilep-togenic foci. Arch Neurol 16: 194-202.

Pylkkö, O., and Woodbury, D. 1961. The effect of maturation on chemically induced seizures in rats. J Pharmacol Exp Therap 131: 185-190.

Rashid, S., Lee, I., Anderson, A.E., Hrachovy, R.A., and Swann, J.W. 1999. Insights into the tetanus toxin model of early-onset epilepsy from long-term video monitoring during anticonvulsant therapy. Brain Res Dev Brain Res 118: 221-225.

Reinhard, J.F., and Reinhard, J.F.J. 1977. Experimental evaluation of anticonvulsants. In Anticonvulsants. Eds. J.A. Vida. pp. 57-111. New York: Academic Press.

Sarkisian, M.R. 2001. Overview of the Current Animal Models for Human Seizure and Epileptic Disorders. Epilepsy Behav 2: 201-216.

Sawamura, A., Hashizume, K., Yoshida, K., and Tanaka, T. 2001. Kainic acid-induced substantia nigra seizure in rats: behavior, EEG and metabolism. Brain Res 911: 89-95.

Schickerovä, R., Mares, P., and Trojan, S. 1984. Correlation between elec-trocorticographic and motor phenomena induced by pentamethylenete-trazol during ontogenesis in rats. Exp Neurol 84: 153-164.

Schoepp, D.D., Gamble, A.Y., Salhoff, C.R., Johnson, B.G., and Ornstein, P.L. 1990. Excitatory amino acid-induced convulsions in neonatal rats mediated by distinct receptor subtypes. Eur J Pharmacol 182: 421-427.

Schröder, J.M. 2000. Isoniazid. In Experimental and Clinical Neurotoxi-cology. Eds. P.S. Spencer, and H.H. Schaumburg. pp. 690-697. New York: Oxford University Press.

Schwarz, S.S., and Freed, W.J. 1986. Inhibition of quisqualate-induced seizures by glutamic acid diethyl ester and anti-epileptic drugs. J Neural Transm 67: 191-203.

Seutin, V., and Johnson, S.W. 1999. Recent advances in the pharmacology of quaternary salts of bicuculline. Trends Pharmacol Sci 20: 268-270.

Shih, T., McDonough, J.H. Jr., and Koplovitz, I. 1999. Anticonvulsants for soman-induced seizure activity. J Biomed Sci 6: 86-96.

Shih, T.M., and McDonough, J.H. Jr. 1999. Organophosphorus nerve agents-induced seizures and efficacy of atropine sulfate as anticonvul-sant treatment. Pharmacol Biochem Behav 64: 147-153.

Shih, T.M., Duniho, S.M., and McDonough, J.H. 2003. Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol 188: 69-80.

Sierra-Paredes, G., and Sierra-Marcuno, G. 1996a. Effects of NMDA antagonists on seizure thresholds induced by intrahippocampal micro-dialysis of picrotoxin in freely moving rats. Neurosci Lett 218: 62-66.

Sierra-Paredes, G., and Sierra-Marcuno, G. 1996b. Microperfusion of picrotoxin in the hippocampus of chronic freely moving rats through microdialysis probes: a new method of induce partial and secondary generalized seizures. J Neurosci Methods 67: 113-120.

Smith, K.L., Lee, C.L., and Swann, J.W. 1998. Local circuit abnormalities in chronically epileptic rats after intrahippocampal tetanus toxin injection in infancy. J Neurophysiol 79: 106-116.

Sogawa, Y., Monokoshi, M., Silveira, D.C., Cha, B.H., Cilio, M.R., McCabe, B.K., Liu, X., et al. 2001. Timing of cognitive deficits following neonatal seizures: relationship to histological changes in the hippocampus. Brain Res Dev Brain Res 131: 73-83.

Somjen, G.G. 2001. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81: 1065-1096.

Soukupova, S., Mikoläsovä, R., Kubova, H., and Mares, P. 1993. New model of cortical foci in freely moving developing rats. Epilepsy Res 15: 27-34.

Spencer, P.S. 2000a. Aluminum and its compounds. In Experimental and Clinical Neurotoxicology. Eds. P.S. Spencer, and H.H. Schaumburg. pp. 142-151. New York: Oxford University Press.

Spencer, P.S. 2000b. 3-Mercaptopropionic acid. In Experimental and Clinical Neurotoxicology. Eds. P.S. Spencer, and H.H. Schaumburg. pp. 762-763. New York: Oxford University Press.

Spencer, P.S., and Schaumburg, H.H. (Eds.) 2000. Experimental and Clinical Neurotoxicology. New York: Oxford University Press.

Spencer, P.S., Wilson, B.W., and Albuquerque, E.X. 2000. Sarin, other "nerve agents" and their antidotes. In Experimental and Clinical Neu-rotoxicology. Eds. P.S. Spencer, and H.H. Schaumburg. pp. 1073-1093. New York: Oxford University Press.

Sperber, E. 1996a. The relationship between seizures and damage in the maturing brain. In Progressive Nature of Epileptogenesis. Eds. U. Heinemann, J.J. Engel, G. Avanzini, B. Meldrum, A. Mouritzen-Dam, and C. Wasterlain. pp. 365-376. Amsterdam: Elsevier.

Sperber, E.F. 1996b. The relationship between seizures and damage in the maturing brain. In Progressive Nature of Epileptogenesis. Eds. U. Heinemann, J. Engel Jr., G. Avanzini, B.S. Meldrum, A. Mouritzen-Dam, and C. Wasterlain. pp. 365-376. Amsterdam: Elsevier.

Sperber, E.F., and Moshe, S.L. 1988. Age-related differences in seizure susceptibility to flurothyl. Dev Brain Res 39: 295-297.

Sperber, E.F., and Moshe, S.L. 2001. The effects of seizures on the hippocampus of the immature brain. In Brain Plasticity and Epilepsy: A Tribute to Frank Morrell. Eds. J.J. Engel, P.A. Schwartzkroin, S.L. Moshe, and D.H. Lowenstein. pp 119-139. San Diego: Academic Press.

Sperber, E.F., Haas, K.Z., Romero, M.T., and Stanton, P.K. 1999a. Flurothyl status epilepticus in developing rats: behavioral, electrographic histo-logical and electrophysiological studies. Brain Res Dev Brain Res 116: 59-68.

Sperber, E.F., Germano, I.M., Friedman, L.K., Veliskova, J., and Romero, M.T. 1999b. The resiliency of the immature brain to seizure-induced damage. In Childhood Epilepsies and Brain Development. Eds. A. Nehlig, J. Motte, S.L. Moshe, and P. Plouin. pp 255-262. London: John Libbey.

Sperk, G., Lassmann, H., Baran, H., Kish, S.J., Seitelberger, F., and Hornykiewicz, O. 1983. Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 10: 1301-1315.

Stafstrom, C.E., and Holmes, G.L. 2002. Infantile spasms: criteria for an animal model. Int Rev Neurobiol 49: 391-411.

Stafstrom, C.E., and Sasaki-Adams, D.M. 2003. NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res 53: 129-137.

Stafstrom, C.E., Thompson, J.L., and Holmes, G.L. 1992. Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Brain Res Dev Brain Res 65: 227-236.

Stafstrom, C.E., Chronopoulos, A., Thurber, S., Thompson, J.L., and Holmes, G.L. 1993. Age-dependent cognitive and behavioral deficits after kainic acid seizures. Epilepsia 34: 420-432.

Stone, W.E., and Javid, M.J. 1980. Aminophylline and imidazole as con-vulsants. Arch Int Pharmacodyn Ther 248: 120-131.

Sutula, T., Zhang, P., Lynch, M., Sayin, U., Golarai, G., and Rod, R. 1998. Synaptic and axonal remodeling of mossy fibers in the hilus and supra-granular region of the dentate gyrus in kainate-treated rats. J Comp Neurol 390: 578-594.

Swinyard, E.A., Woodhead, J.H., White, H.S., and Franklin, M.R. 1989. Experimental selection, quantification, and evaluation of anticonvul-sants. In Antiepileptic Drugs. Eds. R.H. Levy, F.E. Dreifuss, R.H. Mattson, B.S. Meldrum, and J.K. Penry. pp 85-102. New York: Raven Press.

Szot, P., White, S.S., McCarthy, E.B., Turella, A., Rejniak, S.X., and Schwartzkroin, P.A. 2001. Behavioral and metabolic features of repetitive seizures in immature and mature rats. Epilepsy Res 46: 191-203.

Thomas, J., and Yang, Y.C. 1991. Allyglycine-induced seizures in male and female rats. Physiol Behav 49: 1181-1183.

Thurber, S.J., Mikati, M.A., Stafstrom, C.E., Jensen, F.E., and Holmes, G.L. 1994. Quisqualic acid-induced seizures during development: a behavioral and EEG study. Epilepsia 35: 868-875.

Tremblay, E., Nitecka, L., Berger, M., and Ben-Ari, Y. 1984. Maturation of kainic acid seizure-brain damage syndrome in the rat. I. Clinical, elec-trographic and metabolic observations. Neuroscience 13: 1051-1072.

Truitt, E.B., Ebesberg, E.M., and Ling, A.S.G. 1960. Measurement of brain excitability by use of hexaflurodiethyl ether (Indoclon). J Pharm Exp Ther 129: 445-453.

Tuovinen, K. 2004. Organophosphate-induced convulsions and prevention of neuropathological damages. Toxicology 196: 31-39.

Turski, L., Ikonomidou, C., Turski, W.A., Bortolotto, Z.A., and Cavalheiro, E.A. 1989a. Cholinergic mechanisms and epileptogenesis: the seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3: 154-171.

Turski, L., Ikonomidou, C., Turski, W.A., Bortolotto, Z.A., and Cavalheiro, E.A. 1989b. Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3: 154—171.

Turski, L., Meldrum, B.S., Cavalheiro, E.A., Calderazzo-Filho, L.S., Bor-tolotto, Z.A., Ikonomidou-Turski, C., and Turski, W.A. 1987. Paradoxical anticonvulsant activity of the excitatory amino acid N-methyl-D-aspartate in the rat caudate-putamen. Proc Natl Acad Sci U S A 84: 1689-1693.

Turski, W., Turski, L., Czuczwar, S.J., and Kleinrok, Z. 1981. (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid: wet dog shakes, catalepsy and body temperature changes in rats. Pharmacol Biochem Behav 15: 545-549.

Turski, W.A., Cavalheiro, E.A., Schwarz, M., Czuczwar, S.J., Kleinrok, Z., and Turski, L. 1983. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9: 315-335.

Ueda, Y., and Willmore, L.J. 2000a. Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis. Exp Brain Res 133: 334-339.

Ueda, Y., and Willmore, L.J. 2000b. Hippocampal gamma-aminobutyric acid transporter alterations following focal epileptogenesis induced in rat amygdala. Brain Res Bull 52: 357-361.

Ueda, Y., and Willmore, L.J. 2000c. Sequential changes in glutamate transporter protein levels during Fe(3+)-induced epileptogenesis. Epilepsy Res 39: 201-209.

Urion, D., Vreman, H.J., and Weiner, M.W. 1979. Effect of acetate on hypoglycemic seizures in mice. Diabetes 28: 1022-1026.

Vannucci, R.C., and Vannucci, S.J. 1978. Cerebral carbohydrate metabolism during hypoglycemia and anoxia in newborn rats. Ann Neurol 4: 73-79.

Velisek, L., and Mares, P. 1990. Anticonvulsant action of ketamine in laboratory animals. In Status of Ketamine in Anesthesiology. Ed. E.F. Domino. pp 541-549. Ann Arbor, Mich.: NPP Books.

Velisek, L., and Mares, P. 1992. Developmental aspects of the anticonvulsant action of MK-801. In Multiple Sigma and PCP Receptor Ligands: Mechanisms for Neuromodulation and Neuroprotection? Eds. J.M. Kamenka, and E.F. Domino. pp. 779-795. Ann Arbor, Mich.: NPP Books.

Velisek, L., and Mares, P. 1995. Age-dependent anticonvulsant action of clonazepam in the N-methyl-D-aspartate model of seizures. Pharmacol Biochem Behav 52: 291-296.

Velisek, L., and Moshe, S.L. 2000a. Penicillins. In Experimental and Clinical Neurotoxicology. Eds. P.S. Spencer, and H.H. Schaumburg. pp. 948-951. New York: Oxford University Press.

Velisek, L., and Moshe, S.L. 2000b. Cephalosporins. In Experimental and Clinical Neurotoxicology. Eds. P.S. Spencer, and H.H. Schaumburg. pp. 345-348. New York, Oxford University Press.

Velisek, L., Mikolasova, R., and Mares, P. 1989. Effects of ketamine on metrazol-induced seizures during ontogenesis in rats. Pharmacol Biochem Behav 32: 405-410.

Velisek, L., VondTickova, R., and Mares, P. 1993. Models of simple partial and absence seizures in freely moving rats: Action of ketamine. Pharmacol Biochem Behav 45: 889-896.

Velísek, L., Velísková, J., and Moshé, S.L. 1995. Developmental seizure models. Ital J Neurol Sci 16: 127-133.

Velísek, L., Vachová, D., and Mares, P. 1997. Excitatory amino acid antagonists and pentylenetetrazol-induced seizures during ontogenesis. IV. Effects of CGP 39551. Pharmacol Biochem Behavi 56: 493-498.

Velísek, L., Kusá, R., Kulovaná, M., and Mares, P. 1990. Excitatory amino acid antagonists and pentylenetetrazol-induced seizures during ontogenesis: I. The effects of 2-amino-7-phosphonoheptanoate. Life Sci 46: 1349-1357.

Velísek, L., Veresová, S., Pobisová, H., and Mares, P. 1991. Excitatory amino acid antagonists and pentylenetetrazol-induced seizures during ontogenesis: II. The effects of MK-801. Psychopharmacology 104: 510-514.

Vel ísek, L., Kubová, H., Pohl, M., Staüková, L., Mares, P., and Schickerová, R. 1992. Pentylenetetrazol-induced seizures in rats: An ontogenetic study. Naunyn Schmiedebergs Arch Pharmacol 346: 588-591.

Velísková, J., Velísek, L., and Mares, P. 1988. Epileptic phenomena produced by kainic acid in laboratory rats during ontogenesis. Physiol Bohemoslov 37: 395-405.

Velísková, J., Velísek, L., Mares, P., and Rokyta, R. 1990. Ketamine suppresses both bicuculline- and picrotoxin-induced generalized tonic-clonic seizures during ontogenesis. Pharmacol Biochem Behav 37: 667-674.

Velísková, J., Velísek, L., Mares, P., Rokyta, R., and Budko, K.P. 1991. Bicuculline-induced neocortical epileptiform foci and the effects of 6-hydroxydopamine in developing rats. Brain Res Bull 26: 693698.

Velísková, J., Velísek, L., Mares, P., Rokyta, R., and Micianiková, D. 1993. Ethosuximide suppresses seizures and lethality induced by picrotoxin in developing rats. Pharmacol Biochem Behav 44: 975-979.

Vernadakis, A., and Woodbury, D.M. 1969a. The developing animal as a model. Epilepsia 10: 163-178.

Vernadakis, A., and Woodbury, D. 1969b. Maturational factors in development of seizures. In Mechanisms of the Epilepsies. Eds. H. Jasper, A. Ward, and A. Pope. pp. 535-541. Boston: Little, Brown.

Walker, A.E., and Johnson, H.C. 1945. Convulsive factor in commercial penicillin. Arch Surg 50: 69-73.

Walker, A.E., Johnson, H.C., and Kollros, J.J. 1945. Penicillin convulsions: the convulsive effects of penicillin applied to the cerebral cortex of monkey and man. Surg Gynecol Obstet 81: 692-701.

Walker, J.E. 1981a. Effect of aminophylline on seizure thresholds and brain regional cyclic nucleotides in the rat. Exp Neurol 74: 299-304.

Walker, J.E. 1981b. Aminophylline seizures in the rat. J Pharm Pharmacol 33: 479-480.

Ward, A. 1969. The epileptic neuron: chronic foci in animals and man. In Basic Mechanisms of the Epilepsies. Eds. H. Jasper, A. Ward, and A. Pope. pp. 263-288. Boston: Little, Brown.

Wardas, J., Graham, J., and Gale, K. 1990. Evidence for a role of glycine in area tempestas for triggering convulsive seizures. Eur J Pharmacol 187: 59-66.

Weller, A., and Mostofsky, D.I. 1995. Ontogenetic development and pentylenetetrazol seizure thresholds in rats. Physiol Behav 57: 629631.

Williams, H.L., and Bain, J.A. 1961. Convulsive effects of hydrazides: relationship to pyridoxine. Int Rev Neurobiol 3: 319-348.

Wong, R.K., and Prince, D.A. 1979. Dendritic mechanisms underlying penicillin-induced epileptiform activity. Science 204: 1228-1231.

Woodbury, D.M. 1980a. Convulsant drugs; mechanism of drug action. Adv Neurol 27: 249-303.

Woodbury, D.M. 1980b. Convulsants. In Antiepileptic Drugs: Mechanisms of Action. Eds. G.H. Glaser, J.K. Penry, and D.M. Woodbury. New York: Raven Press.

Worms, P., Willigens, M.T., and Lloyd, K.G. 1981. The behavioral effects of systemically administered kainic acid: a pharmacological analysis. Life Sci 29: 2215-2225.

Wyler, A.R., Burchiel, K.J., and Ward, A.A., Jr. 1978. Chronic epileptic foci in monkeys: correlation between seizure frequency and proportion of pacemaker epileptic neurons. Epilepsia 19: 475-483.

Young, A.B., and Snyder, S.H. 1973. Strychnine binding associated with glycine receptors of the central nervous system. Proc Natl Acad Sci U S A 70: 2832-2836.

Yu, Q.H., Kitazumi, K., Kamei, C., and Tasaka, K. 1984. Epileptogenic activity induced by intravenous injection of certain cephalalosporins in rats. J Pharmacobio Dynam 7: 586-592.

Zaczek, R., and Coyle, J.T. 1982. Excitatory amino acid analogues: Neurotoxicity and seizures. Neuropharmacology 21: 15-26.

Zaczek, R., Nelson, M., and Coyle, J.T. 1981. Kainic acid neurotoxicity and seizures. Neuropharmacology 20: 183-189.

Zarbin, M.A., Wamsley, J.K., and Kuhar, M.J. 1981. Glycine receptor: light microscopic autoradiographic localization with [3H]strychnine. J Neurosci 1: 532-547.

Zhao, D.Y., Feng, G.J., Wu, X.R., and Zuo, Q.H. 1985. Seizures induced by intraventricular microinjection of ionized cobalt in the rat—a new experimental model of epilepsy. Brain Res 342: 323-329.

Zhao, T.J., Rosenberg, H.C., and Chiu, T.H. 1996. Treatment with an antisense oligodeoxynucleotide to the GABAA receptor gamma 2 subunit increases convulsive threshold for beta-CCM, a benzodiazepine "inverse agonist', in rats. Eur J Pharmacol 306: 61-66.

Zouhar, A., Mares, P., and Brozek, G. 1980. Electrocorticographic activity elicited by metrazol during ontogenesis in rats. Arch Int Pharmacodyn 248: 280-288.

Zouhar, A., Mares, P., Liskova-Bernaskova, K., and Mudrochova, M. 1989. Motor and electrocorticographic epileptic activity induced by bicu-culline in developing rats. Epilepsia 30: 501-510.

Was this article helpful?

0 0
Tips and Tricks For Boosting Your Metabolism

Tips and Tricks For Boosting Your Metabolism

So maybe instead of being a pencil-neck dweeb, youre a bit of a fatty. Well, thats no problem either. Because this bonus will show you exactly how to burn that fat off AS you put on muscle. By boosting your metabolism and working out the way you normally do, you will get rid of all that chub and gain the hard, rippled muscles youve been dreaming of.

Get My Free Ebook


  • boyd hay
    What is the conclusion of status epilepticus?
    3 years ago

Post a comment