Nanostructured Titanium Implants In Parkridge Illinois Dentist

Days in culture

FIGURE 2.8 Time course of osteoblast (OB) differentiation and synthesis of extracellular matrix (ECM) proteins on newly implanted biomaterials. Three distinct stages are observed: (a) cell proliferation and ECM synthesis, (b) ECM development and maturation, and (c) ECM mineralization. The proteins synthesized at each stage are shown in the respective columns. (Adapted from Webster, T.J. in Advances in Chemical Engineering. Nanostructured Materials, J.Y. Ying, Ed., Academic Press, San Diego, 2001, 125-166; the original figure is copyrighted by Elsevier (2001).)

tissue or organ. This helps us to fabricate materials with similar dimensions and properties. The challenge lies, however, in designing programmable building blocks that can self-organize into functional structures. In the case of orthopedic applications, there is an insatiable need for innovative development of similar self-assembling matter that will promote swift bone deposition in addition to closely matching the mechanical properties of bone. Temperature, concentration, and pH affect the self-assembly of HRN and can lead to the formation of viscous and highly moldable hydrogels. This prospect has had HRN emerge as a promising material well suited for fabricating three-dimensional constructs useful in the repair of bone fractures and as cell delivery vehicles in cartilage transplants. These avenues are also being investigated.


This research was supported by Purdue Research Foundation, Canada's National Research Council, NSERC, the American Chemical Society, U.S. National Science Foundation, Research Corporation, 3M, and the University of Alberta.


1. Jeronimidis, G. 2000. Structure-property relationships in biological materials. In Structural biological materials: Design and structure-property relationships, ed. M. Elices, 3-16. Oxford: Pergamon Press.

2. Klefenz, H. 2004. Nanobiotechnology: From molecules to systems. Eng Life Sci 4:211-218.

3. Alivisatos, P.A. 2001. Less is more in medicine. Sci Am 285:67-73.

4. Whitesides, G.M., and C.J. Love. 2001. The art of building small. Sci Am 285:39-47.

5. Lieber, C.M. 2001. The incredible shrinking circuit. Sci Am 285:59-64.

6. Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson. 1989. Molecular biology of the cell, 2nd ed. New York: Garland Publishing.

7. Eyre, D.R. 1980. Collagen: Molecular diversity in the body's protein scaffold. Science 207: 1315-1322.

8. Kadler, K.E., Y. Hojima, and D.J. Prockop. 1988. Assembly of type I collagen fibrils de novo. J Biol Chem 263:10517-10523.

9. Zhang, J.Z., Z.L. Wang, J. Liu, S. Chen, and G.Y. Liu. 2003. Self-assembled nanostructures, 53-75. New York: Kluwer Academic Publishers.

10. Lehninger, A.L., D.L. Nelson, and M.M. Cox. 1993. DNA repair. In Principles of biochemistry, 2nd ed., 831-839. New York: Worth Publishers.

11. Jeronimidis, G. 2000. Design and function of structural biological materials. In Structural biological materials: Design and structure-property relationships, ed. M. Elices, 19-29. Oxford: Pergamon Press.

12. Etter, M.C. 1990. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23:120-126.

13. Muller, A., H. Reuter, and S. Dillinger. 1995. Supramolecular inorganic chemistry: Small guests in small and large hosts. Angew Chem Int Ed 34:2328-2361.

14. Whitesides, G.M., E.E. Simanek, J.P. Mathias, C.T. Seto, D.N. Chin, M. Mammen, and D.M. Gordon. 1995. Noncovalent synthesis: Using physical-organic chemistry to make aggregates. Acc Chem Res 28:37-44.

15. Prins, L.J., D.N. Reinhoudt, and P. Timmerman. 2001. Non-covalent synthesis using hydrogen bonding. Angew Chem Int Ed 40:2382-2426.

16. Reinhoudt, D.N., and M. Crego-Calama. 2002. Synthesis beyond the molecule. Science 295: 2403-2407.

17. Stoddard, J.F., and H.-R. Tseng. 2002. Chemical synthesis gets a fillip from molecular recognition and self-assembly processes. Proc Natl Acad Sci USA 99:4797-4800.

18. Lehn, J.-M. 1996. Supramolecular chemistry and chemical synthesis. From molecular interactions to self-assembly. NATO ASI Series, Series E: Applied Sciences 320:511-524.

19. Lehn, J.-M. 1995. Supramolecular chemistry: Concepts and perspectives. Weinheim: VCH Publishers.

20. Desiraju, G.R. 1995. Supramolecular synthons in crystal engineering—A new organic synthesis. Angew Chem Int Ed 34:2311-2327.

21. Mascal, M. 1994. Noncovalent design principles and the new synthesis. Contemporary Org Synth 1:31-46.

22. Lindoy, L.F., and I.M. Atkinson. 2000. Self-assembly in supramolecular systems. Cambridge: Royal Society of Chemistry Press.

23. Philp, D., and J.F. Stoddart. 1996. Self-assembly in natural and unnatural systems. Angew Chem Int Ed 35:1155-1196.

24. MacGillivray, L.R., and J.L. Atwood. 1999. Structural classification and general principles for the design of spherical molecular hosts. Angew Chem Int Ed 38:1018-1033.

25. Melendez, R.E., and A.D. Hamilton. 1998. Hydrogen-bonded ribbons, tapes and sheets as motifs for crystal engineering. Top Curr Chem 198:97-129.

26. Lindsey, J.S. 1991. Self-assembly in synthetic routes to molecular devices. Biological principles and chemical perspectives: A review. New J Chem 15:153-180.

27. Hof, F., S.L. Craig, C. Nuckolls, and J. Rebek, Jr. 2002. Molecular encapsulation. Angew Chem Int Ed 41:1488-1508.

28. Hill, D.J., M.J. Mio, R.B. Prince, T.S. Hughes, and J.S. Moore. 2001. A field guide to foldamers. Chem Rev 101:3893-4011.

29. Lawrence, D.S., T. Jiang, and M. Levett. 1995. Self-assembling supramolecular complexes. Chem Rev 95:2229-2260.

30. Zimmerman, S.C., and L.J. Lawless. 2001. Supramolecular chemistry of dendrimers. Top Curr Chem 217:95-120.

31. Zeng, F., and S.C. Zimmerman. 1997. Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly. Chem Rev 97:1681-1712.

32. Albrecht, M. 2001. Let's twist again—Double-stranded, triple-stranded, and circular helicates. Chem Rev 101:3457-3497.

33. Leininger, S., B. Olenyuk, and P.J. Stang. 2000. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem Rev 100:853-908.

34. Matile, S. 2001. Bioorganic chemistry a la baguette: Studies on molecular recognition in biological systems using rigid-rod molecules. Chem Rec 1:162-172.

35. Saalfrank, R.W., and B. Demleitner. 1999. Ligand and metal control of self-assembly in supramo-lecular chemistry. In Perspectives in supramolecular chemistry, vol. 5: Transition metals in supramo-lecular chemistry, ed. J.P. Sauvage, 1-51. Weinheim: Wiley-VCH.

36. Menger, F.M. 2002. Supramolecular chemistry and self-assembly. Proc Natl Acad Sci USA 99:4818-4822.

37. Kato, T. 2000. Hydrogen-bonded liquid crystals: Molecular self-assembly for dynamically functional materials. Struct Bond 96:95-146.

38. Bong, D.T., T.D. Clark, J.R. Granja, and M.R. Ghadiri. 2001. Self-assembling organic nanotubes. Angew Chem Int Ed 40:988-1011.

39. Hartgerink, J.D., E.R. Zubarev, and S.I. Stupp. 2001. Supramolecular one-dimensional objects. Curr Opin Solid State Mater Sci 5:355-361.

40. MacDonald, J.C., and G.M. Whitesides. 1994. Solid-state structures of hydrogen-bonded tapes based on cyclic secondary diamides. Chem Rev 94:2383-2420.

41. Brunsveld, L., B.J.B. Folmer, E.W. Meijer, and R. Sijbesma. 2001. Supramolecular polymers. Chem Rev 101:4071-4097.

42. Cornelissen, J.J.L.M., A.E. Rowan, R.J.M. Nolte, and N.A.J.M. Sommerdijk. 2001. Chiral architectures from macromolecular building blocks. Chem Rev 101:4039-4070.

43. Zhang, J.Z., Z.L. Wang, J. Liu, S. Chen, and G.Y. Liu. 2003. Synthetic self assembled materials: Principles and practice. In Self-assembled nanostructures, 7-39. New York: Kluwer Academic Publishers.

44. Wohler, F. 1828. Poggendorfs Ann Physik 12:253.

45. Lehn, J.-M. 2002. Toward complex matter: Supramolecular chemistry and self-organization. Proc Natl Acad Sci USA 99:4763-4768.

46. Cramer, F. 1993. Chaos and order. Weinheim: VCH Publishers.

47. Special issue on supramolecular chemistry and self-assembly. 2002. Proc Natl Acad Sci USA 99(8).

48. Whitesides, G.M., and B. Grzybowski. 2002. Self-assembly at all scales. Science 295:2418-2421.

49. Seeman, N.C., and A.M. Belcher. 2002. Emulating biology: Building nanostructures from the bottom up. Proc Natl Acad Sci USA 99:6451-6455.

50. Lehn, J.-M. 2002. Toward self-organization and complex matter. Science 295:2400-2403.

51. Sauvage, J.-P., and M.W. Hosseini, eds. 1996. Comprehensive supramolecular chemistry, vol. 9: Templating, self-assembly, and self-organization. Oxford: Pergamon Press.

52. Praemer, A., S. Furner, and S.D. Rice. 1992. Musculoskeletal conditions in the United States. Illinois, Park Ridge: American Academy of Orthopaedic Surgeons.

53. Weinstein, J. 2000. The Dartmouth atlas of musculoskeletal health care. Chicago, Illinois: AHA Press.

54. Webster, T.J. 2001. Nanophase ceramics: The future orthopaedic and dental implant material. In Advances in chemical engineering. Nanostructured materials, ed. J.Y. Ying, 125-166. San Diego: Academic Press.

55. Ontanon, M., C. Aparicio, M.P. Ginbera, and J.A. Planell. 2000. Structure and mechanical properties of cortical bone. In Structural biological materials: Design and structure-property relationships, 1st ed., ed. M. Elices, 33-71. Amsterdam: Pergamon Press.

56. Bostrom, M.P., A. Boskey, J.K. Kaufman, and T.A. Einhorn. 2000. Form and function of bone. In Orthopaedic basic science: Biology and biomechanics of the musculoskeletal system, 2nd ed., eds. J.A. Buckwalter, T.A. Einhorn, and S.R. Sheldon. Illinois, Park Ridge: The American Academy of Orthopaedic Surgeons.

57. Moore, K.L., and A.F. Dalley. 1992. Clinically oriented anatomy, 4th ed. Philadelphia: Lippincott Williams & Wilkins.

58. Cormack, D.H. 2001. Dense connective tissue, cartilage, bone and joints. In Essential histology, 2nd ed. Philadelphia: Lippincott Williams & Wilkins.

59. Hayes, W.C. 1991. Biomechanics of cortical and trabecular bone: Implications for assessment of fracture risk. In Basic orthopaedic biomechanics, eds. V.C. Mow and W.C. Hayes, 93-99. New York: Raven Press.

60. Christenson, R.H. 1997. Biochemical markers of bone metabolism: An overview. Clin Biochem 30:573-593.

61. Tirrell, M., E. Kokkoli, and M. Biesalski. 2002. The role of surface science in bioengineered materials. Surf Sci 500:61-83.

62. Cowin, S.C., W.C. Van Buskirk, and R.B. Ashman. 1987. The properties of bone. In Handbook of bioengineering, eds. R. Skalak and S. Chien. New York: McGraw-Hill.

63. Stupp, S.I., J.A. Hanson, G.W. Ciegler, G.C. Mejicano, J.A. Eurell, and A.L. Johnson. 1992. Organoapatites: New materials for regenerative artificial bone. Mat Res Soc Symp Proc 252:(Tissue inducing biomaterials), 93-98.

64. Ejiofor, J., and T.J. Webster. 2004. Biomedical implants from nanostructured materials. In Encyclopedia of nanoscience and nanotechnology, eds. J.A. Schwarz, C. Contescu, and K. Putyera. New York: Marcel Dekker.

65. Dunn, M.G., and S.H. Maxian. 1994. Biomaterials used in orthopaedic surgery. In Implantation biology. The host response and biomedical devices, ed. R.S. Greco, 229-252. Boca Raton: CRC Press.

66. Kuhn, K.-D. 2000. Bone cements. Up-to-date comparison of physical and chemical properties of commercial materials. Berlin: Springer-Verlag.

67. Hench, L.L., and E.C. Ethridge. 1982. Orthopaedic implants. In Biomaterials an interfacial approach, ed. A. Noordergraaf, 225-252. New York: Academic Press.

68. Unwin, P.S. 2000. The recent advancements in bone and joint implant technology. In Cost-effective titanium component technology for leading-edge performance, Edmunds and London: MWard-Close Professional Engineers Publishing Ltd. for the Institution of Mechanical Engineers.

69. Anderson, J.M., A.G. Gristina, S.R. Hanson, L.A Harker, R.J. Johnson, K. Merritt, P.T. Naylor, and F.J. Schoen. 1996. Host reactions to biomaterials and their evaluation. In Biomaterials science: An introduction to materials in medicine, eds. B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, 165-214. New York: Academic Press.

70. Horbett, T.A. 1996. Proteins: Structure, properties and adsorption to surfaces. In Biomaterials science: An introduction to materials in medicine, eds. B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, 133-140. New York: Academic Press.

71. Price, R.L., M.C. Waid, K.M. Haberstroh, and T.J. Webster, 2003. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24:1877-1887.

72. Price, R.L., K.M. Haberstroh, and T.J. Webster. 2003. Enhanced functions of osteoblast on nanostructured surfaces of carbon and alumina. Med Biol Eng Comput 41:372-375.

73. Webster, T.J., M.C. Waid, J.L. McKenzie, R.L. Price, and J.U. Ejiofor. 2004. Nano-biotechnol-ogy: Carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 15: 48-54.

74. Webster, T.J., C. Ergun, R.H. Doremus, R.W. Segel, and R. Bizios. 2000. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803-1810.

75. Webster, T.J., R.W. Siegel, and R. Bizios. 1999. Osteoblast adhesion on nanophase ceramics. Biomaterials 20:1221-1227.

76. Webster, T.J., R.W. Siegel, and R. Bizios. 2001. Nanoceramic surface roughness enhances osteoblast and osteoclast functions for improved orthopaedic/dental implant efficacy. Scripta Materialia 44:1639-1642.

77. Webster, T.J. 2003. Nanophase ceramics as improved bone tissue engineering materials. Am Ceram Soc Bull 82:23-28.

78. Kyung, M.W., V.J. Chen, and P.X. Ma. 2003. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res 67A: 531-537.

79. Ma, P.X., and R. Zhang. 1999. Synthetic nanoscale fibrous extracellular matrix. J Biomed Mater Res 46:60-72.

80. Stupp, S.I., and G.W. Ciegler. 1992. Organoapatites: Materials for artificial bone. I. Synthesis and microstructure. J Biomed Mater Res 26:169-183.

81. Stupp, S.I., J.A. Hanson, J.A. Eurell, G.W. Ciegler, and A.L. Johnson. 1993. Organoapatites: Materials for artificial bone. III. Biological testing. J Biomed Mater Res 27:301-311.

82. Stupp, S.I., G.C. Mejicano, and J.A. Hanson. 1993. Organoapatites: Materials for artificial bone. II. Hardening reactions and properties. J Biomed Mater Res 27:289-299.

83. Chun, A.L., J.G. Moralez, H. Fenniri, and T.J. Webster. 2004. Helical rosette nanotubes: A more effective orthopaedic implant material. Nanotechnology 15:S234-S239.

84. Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354:56-58.

85. Hamilton, E.J.M., S.E. Dolan, C.M. Mann, H.O. Colijin, C.A. McDonald, and S.G. Shore. 1993. Preparation of amorphous boron nitride and its conversion to a turbostratic, tubular form. Science 260:659-661.

86. Brumlik, C.J., and C.R. Martin. 1991. Template synthesis of metal microtubules. J Am Chem Soc 113:3174-3175.

87. Brorson, M., T.W. Hansen, and C.J.H. Jacobsen. 2002. Rhenium(IV) sulfide nanotubes. J Am Chem Soc 124:11582-11583.

88. Miyaji, F., S.A. Davis, J.P.H. Charmant, and S. Mann. 1999. Organic crystal templating of hollow silica fibers. Chem Mater 11:3021-3024.

89. Hsu, W.K., B.H. Chang, Y.Q. Zhu, W.Q. Han, H. Terrones, M. Terrones, N. Grobert, A.K. Cheetham, H.W. Kroto, and D.R.M. Walton. 2000. An alternate route to molybdenum disulfide nanotubes. J Am Chem Soc 122:10155-10158.

90. Seddon, A.M., H.M. Patel, S.L. Burkett, and S. Mann. 2002. Chiral templating of silica-lipid lamellar mesophase with helical tubular architecture. Angew Chem Int Ed 41:2988-2991.

91. Raez, J., R. Barjovanu, J.A. Massey, M.A. Winnik, and I. Manners. 2000. Self-assembled organo-metallic block copolymer nanotubes. Angew Chem Int Ed 39:3862-3865.

92. Shenton, W., T. Douglas, M. Young, G. Stubbs, and S. Mann. 1999. Inorganic-organic nanotubes composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253-256.

93. Chopra, N.G., R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl. 1995. Boron nitride nanotubes. Science 269:966-967.

94. Kasuga, T., M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara. 1998. Formation of titanium oxide nanotubes. Langmuir 14:3160-3163.

95. Raez, J., I. Manners, and M.A. Winnik. 2002. Nanotubes from self-assembly of asymmetric crystalline-coil poly(ferrocenylsilane-siloxane) block copolymers. J Am Chem Soc 124:10381-10395.

96. Mitchell, D.T., S.B. Lee, L. Trofin, N. Li, T.K. Nevanen, H. Soderlund, and C.R. Martin. 2002. Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864-11865.

97. Nath, M., and C.N.R. Rao. 2002. Nanotubes of group IV metal disulfides. Angew Chem Int Ed 41:3451-3454.

98. Harada, A., J. Li, and M. Kamachi. 1993. Synthesis of a tubular polymer from threaded cyclodex-trins. Nature 364:516-518.

99. Drager, A.S., A.P. Zangmeister, N.R. Armstrong, and D.F. O'Brien. 2001. One-dimensional polymers of octasubstituted phtalocyanines. J Am Chem Soc 123:3595-3596.

100. Nelson, J.C., J.G. Saven, J.S. Moore, and P.G. Wolynes. 1997. Solvophobically-driven folding of non-biological oligomers. Science 277:1793-1796.

101. Ashton, P.R., C.L. Brown, S. Menzer, S.A. Nepogodiev, J.F. Stoddart, and D.J. Williams. 1996. Synthetic cyclic oligosaccharides: Synthesis and structural properties of a cyclo[(1 ! 4)-a-L-rhamnopyranosyl-(1 ! 4)-a-D-mannopyranosyl]trioside and -tetraoside. Chem Eur J2:580-591.

102. Fernandez-Lopez, S., H.-S. Kim, E.C. Choi, M. Delgado, J.R. Granja, A. Khasanov, K. Kraehen-buehl, G. Long, D.A. Weinberger, K.M. Wilcoxen, and M.R. Ghadiri. 2001. Antibacterial agents based on the cyclic D,L-a-peptide architecture. Nature 412:452-455.

103. Leevy, W.M., G.M. Donato, R. Ferdani, W.E. Goldman, P.H. Schlessinger, and G.W. Gokel. 2002. Synthetic hydraphile channels of appropriate length kill Escherichia coli. J Am Chem Soc 124: 9022-9023.

104. Gauthier, D., P. Baillargeon, M. Drouin, and Y.L. Dory. 2001. Self-assembly of cyclic peptides into nanotubes and then into highly anisotropic crystalline materials. Angew Chem Int Ed 40: 4635-4638.

105. Ranganathan, D., C. Lakshmi, and I.L. Karle. 1999. Hydrogen-bonded self-assembled peptide nanotubes from cystine-based macrocyclic bisureas. J Am Chem Soc 121:6103-6107.

106. Engelkamp, H., S. Middlebeek, and R.J.M. Nolte. 1999. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 284:785-788.

107. Baumeister, B., and S. Matile. 2000. Rigid-rod ß-barrels as lipocalin models: Probing confined space by carotenoid encapsulation. Chem Eur J 6:1739-1749.

108. Biron, E., N. Voyer, J.-C. Meillon, M.-E. Cormier, and M. Auger. 2000. Conformational and orientation studies of artificial ion channels incorporated into lipid bilayers. Biopolymers (Pept Sci) 55:364-372.

109. Gokel, G.W., and O. Murillo. 1996. Synthetic organic chemical models for transmembrane channels. Acc Chem Res 29:425-432.

110. Das, G., and S. Matile. 2002. Transmembrane pores formed by synthetic p-octiphenyl ß-barrels with internal carboxylate clusters: Regulation of ion transport by pH and Mg2+-complexed 8-aminonaphthalene-1,3,6-trisulfonate. Proc Natl Acad Sci USA 99:5183-5188.

111. Ranganathan, D., C. Lakshmi, V. Haridas, and M. Gopikumar. 2000. Designer cyclopeptides for self-assembled tubular structures. Pure Appl Chem 72:365-372.

112. Cuccia, L.A., J.-M. Lehn, J.-C. Homo, and M. Schmutz. 2000. Encoded helical self-organization and self-assembly into helical fibers of an oligoheterocyclic pyridine-pyridazine molecular strand. Angew Chem Int Ed 39:233-237.

113. Seebach, D., J.L. Matthews, A. Meden, T. Wessels, C. Baerlocher, and L.B. McCusker. 1997. Cyclo-ß-peptides: Structure and tubular stacking of cyclic tetramers of 3-aminobutanoic acid as determined from powder diffraction data. Helv Chim Acta 80:173-181.

114. Shimizu, L.S., M.D. Smith, A.D. Hughes, and K.D. Shimizu. 2001. Self-assembly of bis-urea macrocycle into a columnar nanotubes. Chem Commun (Camb) 1592-1593.

115. Fenniri, H., P. Mathivanan, K.L. Vidale, D.M. Sherman, K. Hallenga, K.V. Wood, and J.G. Stowell. 2001. Helical rosette nanotubes: Design, self-assembly and characterization. J Am Chem Soc 123:3854-3855.

116. Fenniri, H., B.-L. Deng, A.E. Ribbe, K. Hallenga, J. Jacob, and P. Thiyagarajan. 2002. Entropically-driven self-assembly of multi-channel rosette nanotubes. Proc Natl Acad Sci USA 99:6487-6492.

117. Fenniri, H., B.-L. Deng, and A.E. Ribbe. 2002. Helical rosette nanotubes with tunable chiroptical properties. J Am Chem Soc 124:11064-11072.

118. Fenniri, H., M. Packiarajan, A.E. Ribbe, and K.E. Vidale. 2001. Toward self-assembled electro- and photo-active organic nanotubes. Polym Prepr 42:569-570.

119. Schnur, J.M. 1993. Lipid tubules: A paradigm for molecularly engineered structures. Science 262:1669-1676.

120. Georger, J.H., A. Singh, R.R. Price, J.M. Schnur, P. Yager, and P.E. Schoen. 1987. Helical and tubular microstructures formed by polymerizable phosphatidylcholines. J Am Chem Soc 109:6169-6175.

121. Vauthey, S., S. Santoso, H. Gong, N. Watson, and S. Zhang. 2002. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci USA 99:5355-5360.

122. Nakashima, N., S. Asakuma, and T. Kunitake. 1985. Optical microscope study of helical superstructures of chiral bilayer membranes. J Am Chem Soc 107:509-510.

123. Fuhrhop, J.-H., D. Spiroski, and C. Boettcher. 1993. Molecular monolayer rods and tubules made of a-(L-Lysine), v-(amino)bolaamphiphiles. J Am Chem Soc 115:1600-1601.

124. Frankel, D.A., and D.F. O'Brien. 1994. Supramolecular assemblies of diacetylenic aldonamides. J Am Chem Soc 116:10057-10069.

125. Mueller, A., and D.F. O'Brien. 2002. Supramolecular materials via polymerization of mesophases of hydrated amphiphiles. Chem Rev 102:727-757.

126. Imae, T., Y. Takahashi, and H. Maramatsu. 1992. Formation of fibrous molecular assemblies by amino acid surfactants in water. J Am Chem Soc 114:3414-3419.

127. Kimizuka, N., S. Fujikawa, S. Kuwahara, T. Kunitake, A. Marsh, and J.-M. Lehn. 1995. Mesoscopic supramolecular assembly of a 'janus' molecule and a melamine derivative via complementary hydrogen bonds. Chem Commun (Camb) 2103-2104.

128. Kimizuka, M., T. Kawasaki, K. Hirata, and T. Kunitake. 1995. Tube-like nanostructures composed of networks of complementary hydrogen bonds. J Am Chem Soc 117:6360-6361.

129. Klok, H.-A., K.A. Joliffe, C.L. Schauer, L.J. Prins, J.P. Spatz, M. Möller, P. Timmerman, and D.N. Reinhoudt. 1999. Self-assembly of rodlike hydrogen-bonded nanostructures. J Am Chem Soc 121:7154-7155.

130. Choi, I.S., X. Li, E.E. Simanek, R. Akaba, and G.M. Whitesides. 1999. Self-assembly of hydrogen-bonded polymeric rods based on the cyanuric acid-melamine lattice. Chem Mater 11:684-690.

131. Marchi-Artzner, V., F. Artzner, O. Karthaus, M. Shimomura, K. Ariga, T. Kunitake, and J.-M. Lehn. 1998. Molecular recognition between 2,4,6-triaminopyrimidine lipid monolayers and complementary barbituric acid molecules at the air/water interface: Effects of hydrophilic spacer, ionic strength, and pH. Langmuir 14:5164-5171.

132. Marchi-Artzner, V., J.-M. Lehn, and T. Kunitake. 1998. Specific adhesion and lipid exchange between complementary vesicle and supported or Langmuir films. Langmuir 14:6470-6478.

133. Kawasaki, T., M. Tokuhiro, N. Kimizuka, and T. Kunitake. 2001. Hierarchical self-assembly of chiral complementary hydrogen-bond networks in water: Reconstitution of supramolecular membranes. J Am Chem Soc 123:6792-6800.

134. Corey, E.J., and X.-M. Cheng. 1989. The logic of chemical synthesis. New York: John Wiley & Sons.

135. Nicolaou, K.C., and E.J. Sorensen. 1996. Classics in total synthesis. New York: VCH Publishers.

136. Gittens, S.A., and H. Uludag. 2001. Growth factor delivery for bone tissue engineering. J Drug Target 9:407-429.

137. Dee, K., T. Thomas, and R.B. Andersen. 1998. Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J Biomed Mater Res 40:371-377.

138. Chun, A.L., J.G. Moralez, T.J. Webster, and H. Fenniri. 2005. Helical rosette nanotubes: A biomimetic coating for orthopaedics? Biomaterials 26:7304-7309.

139. Zhou, H.-Y., Y. Ohnuma, H. Takita, R. Fujisawa, M. Mizuno, and Y. Kuboki. 1992. Effects of a bone lysine-rich 18 kDa protein on osteoblast-like MC3T3-E1 cells. Biochem Biophys Res Commun 186:1288-1293.

140. Oxlund, H., M. Barckman, G. Ortoft, and T.T. Andreassen. 1995. Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:365S-371S.

141. Fini, M., P. Torricelli, G. Giavaresi, A Carpi, A. Nicolini, and R. Giardino. 2001. Effect of L-lysine and L-arginine on primary osteoblast cultures from normal and osteopenic rats. Biomed Pharmac-other 55:213-220.

142. Torricelli, P., M. Fini, G. Giavaresi, and R. Giardino. 2003. Human osteopenic bone-derived osteoblasts: Essential amino acids treatment effects. Artif Cells Blood Substit Immobil Biotechnol 31:35-46.

143. Webster, T.J. 2004. Proteins: Structure and interaction patterns to solid surfaces. In Encyclopedia of nanoscience and nanotechnology, eds. J.A. Schwarz, C. Contescu, and K. Putyera, 1-16. New York: Marcel Dekker.

144. Stein, G., and J.B. Lian. 1993. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14:424-441.

145. Cooper, L.F., T. Masuda, P.K. Yliheikklika, and D.A. Felton. 1998. Generalizations regarding the process and phenomenon of osseointegration. Part II. In vitro studies. Int J Oral Maxillofac Implants 13:163-174.

146. Puleo, D.A., K.E. Preston, J.B. Shaffer, and R. Bizios. 1993. Examination of osteoblast-orthopaedic biomaterial interactions using molecular techniques. Biomaterials 14:111-114.

147. Puleo, D.A., L.A. Holleran, R.H. Doremus, and R. Bizios. 1991. Osteoblast responses to orthopedic implant materials in vitro. J Biomed Mater Res 25:711-723.

148. Dalton, B.A., C.D. McFarland, P.A. Underwood, and J.G. Steele. 1995. Role of the heparin-binding domain of fibronectin in attachment and spreading of human bone-derived cells. J Cell Sci 108:2083-2092.

149. Nakamura, H., and H. Ozawa. 1994. Immunohistochemical localization of heparan sulfate pro-teoglycan in rat tibiae. J Bone Miner Res 9:1289-1299.

150. Puleo, D.A., and R. Bizios. 1992. Mechanisms of fibronectin-mediated attachment of osteoblasts to substrates in vivo. Bone Miner 18:215-226.

0 0

Post a comment