Current Development

Although bionanomanufacturing is still in a state of infancy, the unique functions and properties of biomolecules (see Section 15.3) have attracted substantial research interest and development in this area over the last few decades. Current research and development for bionanomanufacturing encompasses a wide array of scientific disciplines, materials, and nanofabrication platforms. Early successes include the proof-of-principle demonstration for nanomanufacturing approaches such as self-assembly and direct-deposition of biomolecules, as well as the applications of biomolecular assembles for biosensing, biomedical imaging, and drug delivery. As it is beyond the scope of this chapter to cover each topic individually, we will only highlight some of these emerging areas in this chapter, by providing an overview of the current accomplishments in the field of bionanomanufacturing. We will primarily focus on the applications of parallel bionanomanufacturing based on a variety of biological components (DNA, proteins, lipids, and viruses) using the bottom-up nanofabrication approaches (see Section 15.4.1). These approaches can also be applied to biomanufacturing processes in hybrid systems involving metals, semiconducting materials, minerals, carbon nanotubes, and synthetic polymers. In addition, we will discuss the recent development of serial bionanomanufacturing processes based on the top-down nanofabrication approach, particularly DPN, anodization lithography, nanoshaving, nanografting, and nanopipettes. These serial methods have emerged as promising alternatives to self-assembly for fabrication of bionanostructures in a stepwise fashion and under ambient conditions (see Section 15.4.2).

0 0

Post a comment