Jama Prang Sex Japan

1. Zimmet PZ. Kelly West Lecture 1991. Challenges in diabetes epidemiology-from West to the rest. Diabetes Care 1992; 15:232-252.

2. Dinneen S, Gerich J, Rizza R. Carbohydrate metabolism in noninsulin-dependent diabetes mellitus. N Engl J Med 1992; 327:707-713.

3. Firth RG, Bell PM, Marsh HM, Hansen 1, Rizza RA. Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus: role of hepatic and extrahepatic tissues. J Clin Invest 1986; 77:1525-1532.

4. Butler PC, Rizza RA. Contribution to postprandial hyperglycemia and effect on initial splanchnic glucose clearance of hepatic glucose cycling in glucose-intolerant or NIDDM patients. Diabetes 1991; 40:73-81.

5. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104:787-794.

6. Kaprio J, Tumiletho J, Koskenvuo M, Romanov K, Renuanen A, Erikson J, Stengaard J, Kesaaniemi YA. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 1992; 35:1060-1067.

7. Kumar D, Gemayel NS, Deapen D, Kapadia D, Yamashita PH, Lee M, Dwyer JH, Roy-Burman P, Bray GA, Mack TM. North-American twins with IDDM: genetic, etiological, and clinical significance of disease concordance according to age, zygosity, and the interval after diagnosis in first twin. Diabetes 1993; 42:1351-1363.

8. Medici F, Hawa M, Ianari A, Pyke DA, Leslie RD. Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia 1999; 42:146-150.

9. Committee on Diabetic Twins, Japan Diabetes Society. Diabetes mellitus in twins: a cooperative study in Japan. Diabetes Res Clin Pract 1988; 5:271-280.

10. Radha V, Vimaleswaran KS, Deepa R, Mohan V. The genetics of diabetes mellitus. Indian J Med Res 2003; 117:225-238.

11. Polonsky KS, Sturis J, Bell GI. Seminars in Medicine of the Beth Israel Hospital, Boston. Non-insulin-dependent diabetes mellitus a genetically programmed failure of the beta cell to compensate for insulin resistance. N Engl Med 1996; 334:777-783.

12. Morris RD, Rimm DL, Hartz AJ, Kalkhoff RK, Rimm AA. Obesity and heredity in the etiology of non-insulin-dependent diabetes mellitus in 32,662 adult white women. Am J Epidemiol 1989; 130:112-121.

13. Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4:285-299.

14. Kirchheiner J, Brockmoller J, Meineke I, Bauer S, Rohde W, Meisel C, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 2002; 71:286-296.

15. Niemi M, Cascorbi I, Timm R, Kroemer HK, Neuvonen PJ, Kivisto KT. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 2002; 72:326-332.

16. Dunn CJ, Faulds D. Nateglinide. Drugs 2000; 60:607-615.

17. Levien TL, et al. Nateglinide therapy for type 2 diabetes mellitus. Ann Pharmacother 2001; 35:1426-1434.

18. Karara AH, Dunning BE, McLeod JF. The effect of food on the oral bioavailability and the pharmacodynamic actions of the insulinotropic agent A-4166 in healthy subjects. I Clin Pharmacol 1999; 39:172-179.

19. Takesada H, Matsuda K, Ohtake R, et al. Structure determination of metabolites isolated from urine and bile after administration of AY4166, a novel D-phenylalanine-derivative hypogly-cemic agent. Bioorg Med Chem 1996; 4:1771-1781.

20. Hanefeld M, Bouter KP, Dickinson S, Guitard C. Rapid and shortacting mealtime insulin secretion with nateglinide controls both prandial and mean glycemia. Diabetes Care 2000; 23:202-207.

21. Horton ES, Clinkingbeard C, Gatlin M, Foley J, Mallows S, Shen S. Nateglinide alone and in combination with metformin improves glycemic control by reducing mealtime glucose levels in type 2 diabetes. Diabetes Care 2000; 23:1660-1665.

22. Schwarz UI. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Invest 2003; 33(suppl 2):23-30.

23. Thomas RC, Ikeda GJ. The metabolic fate of tolbutamide in man and in the rat. J Med Chem 1966; 9:507-510.

24. Nelson E, O'Reilly I. Kinetics of carboxytolbutamide excretion following tolbutamide and carboxytolbutamide administration. J Pharmacol Exp Ther 1961; 132: 103-109.

25. Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45:525-538.

26. Lee CR, Pieper JA, Frye RF, Hinderliter AL, Blaisdell JA, Goldstein JA. Tolbutamide, flurbiprofen, and losartan as probes of CYP2C9 activity in humans. J Clin Pharmacol 2003; 43:84-91.

27. Scott J, Poffenbarger PL. Pharmacogenetics of tolbutamide metabolism in humans. Diabetes 1979; 28:41-51.

28. Veronese ME, Miners JO, Rees DLP, Birkett DJ. Tolbutamide hydroxylation in humans: lack of bimodality in 106 healthy subjects. Pharmacogenetics 1993; 3:86-93.

29. Miners JO, Wing LM, Birkett DJ. Normal metabolism of debrisoquine and theophylline in a slow tolbutamide metaboliser. Aust N Z J Medical 1985; 15:348-349.

30. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996; 6:341-349.

31. Bhasker CR, Miners JO, Coulter S, Birkett DJ. Allelic and functional variability of cytochrome P4502C9. Pharmacogenetics 1997; 7:51-58.

32. Kirchheiner J, Bauer S, Meineke I, Rohde W, Prang V, Meisel C, et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 2002; 12:101-109.

33. Shon JH, Yoon YR, Kim KA, Lim YC, Lee KJ, Park JY, et al. Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans. Pharmacogenetics 2002; 12:111-119.

34. Lee CR, Pieper JA, Hinderliter AL, Blaisdell JA, Goldstein JA. Evaluation of cytochrome P4502C9 metabolic activity with tolbutamide in CYP2C9* 1 heterozygotes. Clin Pharmacol Ther 2002; 72:562-571.

35. Miners J. CYP2C9 polymorphism. Impact on tolbutamide pharmacokinetics and response. Pharmacogenetics 2002; 12:91 -92.

36. Niemi M, Leathart JB, Neuvonen M, Backman JT, Daly AK, Neuvonen PJ. Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide. Clin Pharmacol Ther 2003; 74:380-387.

37. Leslie RDG, Pyke DA. Chlorpropamide-alcohol flushing: a dominantly inherited trait associated with diabetes. BMJ 1978; 2:1519-1521.

38. Pyke DA, Leslie RDG. Chlorpropamide-alcohol flushing: a definition of its relation to non-insulin-dependent diabetes. BMJ 1978; 2:1521-1522.

39. Jerntorp P, Almer LO. Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes. Acta Med Scand Suppl 1981; 656:33-36.

40. Ohlin H, Jerntorp P, Bergstrom B, Almer LO. Ohlin H, Jerntorp P, Bergstrom B, Almer LO. Chlorpropamide-alcohol flushing, aldehyde dehydrogenase activity, and diabetic complications. Br Med J 1982; 285:838-840.

Bonisolli L, Pontiroli AE, De Pasqua A, Calderara A, Maffi P, Gallus G, Radaelli G, Pozza G. Association between chlorpropamide-alcohol flushing and fast acetylator phenotype in type I and type II diabetes. Acta Diabetol Lat 1985; 22:305-315.

de Silva NE, et al. Low incidence of chlorpropamide-alcohol flushing in diet-treated, non-insulin-dependent diabetes. Lancet 1981; i:128-131.

Fui SNT, Keen H, Jarrett RJ, Strakosch C, Murrells T, Marsden P, Stott R. Epidemiological study of prevalence of chlorpropamide alcohol flushing in insulin dependent diabetes, noninsulin dependent diabetics, and non-diabetics. BMJ 1983; 287:1509-1512. Fui SNT, et al. Test for chlorpropamide-alcohol flush becomes positive after prolonged chlor-propamide treatment in insulin-dependent and non-insulin-dependent diabetics. N Engl J Med 1983; 309:93-96.

Lao B, Czyzyk A, Szutowski M, Szczepanik Z. Alcohol tolerance in patients with non-insulin-dependent (type 2) diabetes treated with sulphonylurea derivatives. Arzneimittelforschung 1994; 44:727-734.

Tattersall RB. Mild familial diabetes with dominant inheritance. QJM 1974; 43:339-357. Ehtisham S, Barrett TG. The emergence of type 2 diabetes in childhood. Ann Clin Biochem 2004; 41:10-16.

Frayling TM, Lindgren CM, Chevre JC, Menzel S, Wishart M, Benmezroua Y, Brown A, Evans JC, Rao PS, Dina C, et al. A genome-wide scan in families with maturity-onset diabetes of the young: evidence for further genetic heterogeneity. Diabetes. 2003; 52(3):872-881. Owen K, Hattersley AT. Maturity-onset diabetes of the young: From clinical description to molecular genetic characterization. Bailliere's Best Practice and Research in Clinical Endocrinology and Metabolism 2001; 15/3:309-323.

Pearson ER, Velho G, Clark P, Stride A, Shepherd M, Frayling TM, Bulman MP, Ellard S, Froguel P, Hattersley AT. Beta-cell genes and diabetes: quantitative and qualitative differences in the pathophysiology of hepatic nuclear factor-1alpha and glucokinase mutations. Diabetes 2001; 50:S101-S107.

Lambert AP, Ellard S, Allen LI, Gallen IW, Gillespie KM, Bingley PJ, Hattersley AT. Identifying hepatic nuclear factor 1alpha mutations in children and young adults with a clinical diagnosis of type 1 diabetes. Diabetes Care 2003; 26:333-337.

Owen KR, Stride A, Ellard S, Hattersley AT. Etiological investigation of diabetes in young adults presenting with apparent type 2 diabetes. Diabetes Care 2003; 26:2088-2093. Richter S, Shih DQ, Pearson ER, Wolfrum C, Fajans SS, Hattersley AT, Stoffel M. Regulation of apolipoprotein M gene expression by MODY3 gene hepatocyte nuclear factor-1alpha: haploinsufficiency is associated with reduced serum apolipoprotein M levels. Diabetes 2003; 52:2989-2995.

Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV, et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 1996; 384:455-458. Hattersley AT, Turner RC, Permutt MA, Patel P, Tanizawa Y, Chiu KC, O'Rahilly S, Watkins PJ, Wainscoat JS. Linkage of type 2 diabetes to the glucokinase gene. Lancet 1992; 339:1307-1310.

Vaxillaire M, Boccio V, Philippi A, Vigouroux C, Terwilliger J, Passa P, Beckmann JS, Velho G, Lathrop GM, Froguel P. A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q. Nat Genet 1995; 9(4):418-423. Frayling TM, Evans JC, Bulman MP, Pearson E, Allen L, Owen K, Bingham C, Hannemann M, Shepherd M, Ellard S, Hattersley AT. Beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 2001; 50:S94-S100. Heiervang E, Folling I, Sovik O, et al. Maturity-onset diabetes of the young: studies in a Norwegian family. Acta Paediatr Scand 1989; 78:74-80.

Sovik O, Njolstad P, Folling I, Sagen J, Cockburn BN, Bell GI. Hyperexcitability to sulpho-nylurea in MODY3. Diabetologica 1998; 41:607-608.

Hathout EH, Cockburn BN, Mace JW, Sharkey J, Chen-Daniel J, Bell GI. A case of hepatocyte nuclear factor-1 alpha diabetes/MODY3 masquerading as type 1 diabetes in a

Mexican-American adolescent and responsive to a low dose of sulphonylurea. Diabetes Care 1999; 22:867-868.

61. Pearson ER, Liddell WG, Shepherd M, Corrall RJ, Hattersley AT. Sensitivity to sulphonylur-eas in patients with hepatocyte nuclear factor-lalpha gene mutations: evidence for pharmacogenetics in diabetes. Diabetic medicine {Diabet-Med} 2000; 17(7):543-545.

62. Hansen T, Eiberg H, Rouard M, et al. Novel MODY3 mutations in the hepatic nuclear factor-la gene: evidence for a hyperexcitability of pancreatic ß-cells to intravenous secretagogues in a glucose-tolerant carrier of a P447L mutation. Diabetes 1997; 46:726-730.

63. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003; 362:1275-1281.

64. Ashcroft FM, Gribble FM. Tissue-specific effects of sulphonylureas: lessons from studies of cloned K (ATP) channels. J Diabetes Complications 2000; 14:192-196.

65. Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, Babinet C, Yaniv M. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 1996; 84:575-585.

66. Lee YH, Sauer B, Gonzalez FJ. Laron dwarfism and non-insulin dependent diabetes mellitus in the HNF-1alpha knockout mouse. Mol Cell Biol 1998; 18:3059-3068.

67. Boileau P, Wolfrum C, Shih DQ, Yang TA, Wolkoff AW, Stoffell M. Decreased glibencla-mide uptake in hepatocytes of hepatocyte nuclear factor-1(alpha)-deficient mice: A mechanism for hypersensitivity to sulfonylurea therapy in patients with maturity-onset diabetes of the young, type 3 (MODY3). Diabetes 2002; 51(3):S343-S348.

68. Wang H, Antinozzi PA, Hagenfeldt KA, Maechler P, Wollheim CB. Molecular targets of a human HNF-1apha mutation responsible for pancreatic beta-cell dysfunction. Embo J 2000; 19:4257-4264.

69. Shih DQ, Screenan S, Munoz KN, Philipson L, Pontoglio M, Yaniv M, Polonsky KS, Stoffel M. Loss of HNF-1alpha function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes 2001; 50:2472-2480.

70. Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43:527-550.

71. Marx N, Sukhova G, Murphy C, Libby P, Plutzky J. Macrophages in human atheroma contain PPAR[gamma]: differentiation-dependent peroxisomal proliferator-activated receptor gamma (PPAR[gamma]) expression and reduction of MMP-activity through PPAR[gamma] activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153:17-23.

72. Watanabe-I, Tomita-A, Shimizu-M, Sugawara-M, Yasumo-H, Koishi-R, Takahashi-T, Miyoshi-K, Nakamura-K, Izumi-T, Matsushita-Y, Furukawa-H, Haruyama-H, Koga-T. A study to survey susceptible genetic factors responsible for troglitazone-associated hepato-toxicity in Japanese patients with type 2 diabetes mellitus. Clinical Pharmacology and Therapeutics 2003; 73:435-455.

73. Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, Shulman GI. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 1998; 338:867-887.

74. Schwartz S, Raskin P, Fonseca V, Graveline JF. Effect of troglitazone in insulin-treated patients with type II diabetes mellitus: Troglitazone and Exogenous Insulin Study Group. N Engl J Med 1998; 338:861-866.

75. Kumar S, Boulton AJ, Beck-Nielsen H, Berthezene F, Muggeo M, Persson B, Spinas GA, Donoghue S, Lettis S, Stewart-Long P. Troglitazone, an insulin action enhancer, improves metabolic control in NIDDM patients: Troglitazone Study Group. Diabetologia 1996; 39:701-709.

76. Antonucci T, Whitcomb R, McLain R, Lockwood D, Norris RM. Impaired glucose tolerance is normalized by treatment with the thiazolidinedione troglitazone. Diabetes Care 1997; 20:188-193.

77. Masugi J, Tamori Y, Kasuga M. Inhibition of adipogenesis by a COOH-terminally truncated mutant of PPARy2 in 3T3-L1 cells. Biochem Biophys Res Commun 1999; 264:93-99.

Yen CJ, Beamer BA, Negri C, Silver K, Brown KA, Yarnall DP, Burns DK, Roth J, Shuldiner AR. Molecular scanning of the human peroxisome proliferator-activated receptor g (PPAR-) gene in diabetic Caucasians: identification of a Pro12Ala PPAR2 missense mutation. Biochem Biophys Res Commun 1997; 240:270-276.

Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen C, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. Pro12Ala substitution in PPARg2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998; 20:284-287. Hamann A, Münzberg H, Buttron P, Busing P, Hinney A, Mayer H, Siegfried W, Hebebrand J, Greten H. Missense variants in the human peroxisome proliferator-activated receptor-g2 gene in lean and obese subjects. Eur J Endocrinol 1999; 141:90-92. Beamer BA, Yen CJ, Andersen RE, Muller D, Elahi D, Cheskin LJ, Andres R, Roth J, Shuldiner AR. Association of the Pro12Ala variant in the peroxisome proliferator-activated receptor-g2 gene with obesity in two Caucasian populations. Diabetes 1998; 47:1806-1808.

Ek J, Urhammer SA, Sorensen TIA, Andersen T, Auwerx J, Pedersen O. Homozygosity of the Pro12Ala variant of the peroxisome proliferator-activated receptor-g2 (PPARg-2): divergent modulating effects on body mass index in obese and lean Caucasian men. Diabetologia 1999; 42:892-895.

Koch M, Rett K, Maerker E, Volk A, Haist K, Deninger M, Renn W, Haring HU. The PPAR-g2 amino acid polymorphism Pro12Ala is prevalent in offspring of type II diabetic patients and is associated to increased insulin sensitivity in a subgroup of obese subjects. Diabetologia 1999; 42:758-762.

Ristow M, Müller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Human obesity associated with a mutation in PPARg2, a regulator of adipocyte differentiation. N Engl J Med 1998; 339:953-959.

Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, Soos MA, Maslen GL, Williams TD, Lewis H, Schafer AJ, Chatterjee VK, O'Rahilly S. Dominant negative mutations in human PPAR associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999; 402:880-883.

Shuldiner AR, Nguyen W, Kao WH, Beamer BA, Andersen RE, Pratley R, Brancati FL. Pro115Gln peroxisome proliferator-activated receptor-g and obesity. Diabetes Care 2000; 23:126-127.

Blüher M, Lübben G, Paschke R. Analysis of the relationship between the Pro12Ala variant in the PPAR-g2 gene and the response rate to therapy with pioglitazone in patients with type 2 diabetes. Diabetes Care 2003; 26: 825-831.

Qi N, Kazdova L, Zidek V, Landa V, Kren V, Pershadsingh HA, Lezin ES, Abumrad NA, Pravenec M, Kurtz TW. Pharmacogenetic evidence that cd36 is a key determinant of the metabolic effects of pioglitazone. J Biol Chem 2002; 277:48501-48507. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93:241-252. Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 1993; 268:17665-17668.

Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels. JAMA 1998; 279:1615-1622. Shepherd J, Olsson AG, Sacks FM, Black DM, Orloff DG, Bilheimer DW. Should separate endpoint trials be required for all lipid-lowering drugs acting by the same mechanism? Am J Cardiol 1998; 81:88F-94F.

Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. New Eng J Med 1995; 333:1301-1307. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344:1383-1389.

95. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. New Eng J Med 1996; 335:1001-1009.

96. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. New Eng J Med 1998; 339:1349-1357.

97. Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins. JAMA 1998; 279:1643-1650.

98. Dornbrook-Lavender KA, Pieper JA. Genetic polymorphisms in emerging cardiovascular risk factors and response to statin therapy. Cardiovasc Drugs Ther 2003; 17:75-82.

99. Mahley RW. Apolipoprotein E: cholesterol transport protein wit expanding role in cell biology. Science 1988; 240:622-640.

100. Wilson PWF, Schaefer EJ, Larson MG, et al. Apolipoprotein E alleles and risk of coronary disease: a meta-analysis. Arterioscler Thromb Vasc Biol 1996; 16:1250-1255.

101. Gerdes LU, Gerdes C, Kervinen K, et al. The apolipoprotein E4 allele determines prognosis and the effect on prognosis of simvastatin in survivors of myocardial infarction - A Substudy of the Scandinavian Simvastatin Survival Study. Circulation 2000; 101:1366-1371.

102. Green F, Hamsten A, Blomback M, et al. The role of ß-fibrinogen genotype in determining plasma fibrinogen levels in young survivors of myocardial infarction and healthy controls from Sweden. Thrombosis and Hemostasis 1993; 70:915-920.

103. Humphries SE, Cook M, Dubowitz M, et al. Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentrations. Lancet 1987; 1:1452-1455.

104. Behague I, Poirier O, Nicaud V, et al. ß-fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction - The ECTIM Study. Circulation 1996; 93:440-449.

105. de Maat, Kastelein JPJ, Jukema JW, et al. -455G/A polymorphism of the ß-fibrinogen gene is associated with the progression of coronary atherosclerosis in symptomatic men - proposed role for an acute-phase reaction pattern of fibrinogen. Arterioscler Thromb Vasc Biol 1998; 18:265-271.

106. Tall AR, Wang N. Tangier disease as a test of the reverse cholesterol transport hypothesis. J Clin Invest 2000; 106:1205-1207.

107. Kuivenhoven JA, Jukema JW, Zwinderman AH, et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. N Engl J Med 1998; 338:86-93.

108. Maitland-van der Zee AH, Klungel OH, Stricker BH, Monique Verschuren WM, Kastelein JJ, Leufkens HG, et al. Genetic polymorphisms: importance for response to HMG-CoA reductase inhibitors. Atherosclerosis 2002; 163:213-222.

109. Gordon DJ, Rifkind BM. High-density lipoprotein - The clinical implications of recent studies. N Engl J Med 1989; 321:1311-1316.

110. Hannuksela ML, Liinamaa MJ, Kesaniemi YA, et al. Relation of polymorphisms in the cho-lesteryl ester transfer protein gene to transfer protein activity and plasma lipoprotein levels in alcohol drinkers. Atherosclerosis 1994;110:35-44.

111. Jin W, Marchandier D, Rader DJ. Lipases and HDL metabolism. Trends in Endocrinology and Metabolism 2002; 13:174-178.

112. Zambon A, Austin MA, Brown BG, et al. Effect of hepatic lipase on LDL in normal men and those with coronary artery disease. Arterioscler Thromb 1993; 13:147-153.

113. Austin MA, Breslow JL, Hennekens CH, et al. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988; 260:1917-1921.

114. Zambon A, Deeb SS, Brown BG, et al. Common hepatic lipase gene promoter variant determines clinical response to intensive lipid-lowering treatment. Circulation 2001; 103:792-798.

115. Zambon A, Deeb SS, Hokanson JE, et al. Common variants in the promoter of the hepatic lipase gene are associated with lower levels of hepatic lipase activity, buoyant LDL, and higher HDL cholesterol. Arterioscler Thromb Vasc Biol 1998; 18:1723-1729.

Gehrisch S. Common mutations of the lipoprotein lipase gene and their clinical significance. Curr Atheroscler Rep 1999; 1:70-78.

Jukema JW, van Boven AJ, Groenmeijer B, et al. The Asp(9)Asn mutation in the lipoprotein lipase gene is associated with increased progression of coronary atherosclerosis. Circulation 1996; 94:1913-1918.

Weiss EJ, Bray PF, Tayback M, et al. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Eng J Med 1996; 334:1090-1094. Walter DH, Schachinger V, Elsner M, et al. Platelet glycoprotein Ilia polymorphisms and risk of coronary stent thrombosis. Lancet 1997; 350:1217-1219.

Kastrati A, Schomig A, Seyfarth M, et al. PIA polymorphism of platelet glycoprotein Ilia and risk of restenosis after coronary stent placement. Circulation 1999; 99:1005-1010. Feng D, Lindpainter K, Larson MG, et al. The Framingham offspring study. Increased platelet aggregability associated with platelet GPIIIa PIA2 polymorphism. Arterioscler Thromb Vasc Biol 1999; 19:1142-1147.

Walter DH, Schachinger V, Elsner M, et al. Statin therapy is associated with reduced restenosis rates after coronary stent implantation in carriers of the PIA2 allele of the platelet glycoprotein Ilia gene. Eur Heart J 2001; 22:587-595.

de Maat MPM, Jukema JW, Ye S, et al. Effect of the stromelysin-1 promoter on efficacy of pravastatin in coronary atherosclerosis and restenosis. Am J Cardiol 1999; 83:852-856. Ye S, Watts GF, Mandalia S, et al. Preliminary report: genetic variation in the human strome-lysin promoter is associated with progression of coronary atherosclerosis. Br Heart J 1995; 73:209-215.

Jukema JW, Bruschke AVG, van Boven AJ, et al. Effects of lipid lowering by pravastatin on disease progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels-The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995; 91:2528-2540.

Humphries SE, Luong L, Talmud PJ, et al. The 5A/6A polymorphism in the promoter of the stromelysin-1 (MMP-3) gene predicts progression of angiographically determined coronary artery disease in men in the LOCAT gemfibrozil study. Atherosclerosis 1998; 139:49-56.

Syvanne M, Taskinen MR, Nieminen MS, et al. A study to determine the response of coronary atherosclerosis to raising low high-density lipoprotein cholesterol with a fibric-acid derivative in men after coronary bypass surgery. The rationale, design, and baseline characteristics of the LOCAT study. Control Clin Trials 1997; 18:93.

Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet 2002; 41:343-370.

Kathawala FG. HMG-CoA reductase inhibitors: an exciting development in the treatment of hyperlipoproteinemia. Med Res Rev 1991; 11:121-146.

Kirchheiner J, Kudlicz D, Meisel C, Bauer S, Meineke I, Roots I, Brockmoller J. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin Pharmacol Ther 2003; 74:186-194.

Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene 2003; 22:7468-7485.

Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 2004; 75:13-33. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 1987; 84:7735-7738.

Kim R, Wilkinson G. Pharmacogenetics of drug transporters. In: Kalow W, Meyer UA, Tyndale RF, eds. Pharmacogenomics. New York: Marcel Dekker, 2001:81-108. Randell A, Sambrook PN, Nguyen TV, Lapsley H, Jones G, Kelly PJ, Eisman JA. Direct clinical and welfare costs of osteoporotic fractures in elderly men and women. Osteoporos Int 1995; 5:427 -432.

136. Ray NF, Chan JK, Thamer M, Melton LJR. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: Report from the National Osteoporosis Foundation. J Bone Miner Res 1997; 12:24-35.

137. Cooper C, Atkinson EJ, Jacobsen SJ, O'Fallon WM, Melton LJD. Population-based study of survival after osteoporotic fractures. Am J Epidemiol 1993; 137:1001-1005.

138. Johnston CJ, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M. Calcium supplementation and increases in bone mineral density in children. N Engl J Med 1992; 327:82-87.

139. Hui SL, Slemenda CW, Johnston CC Jr. The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1990; 1:30-34.

140. Johnston CC Jr, Slemenda CW. Changes in skeletal tissue during the aging process. Nutr Rev 1992; 50:385-387.

141. Tuppurainen M, Honkanen R, Kroger H, Saarikoski S, Alhava E. Osteoporosis risk factors, gynaecological history and fractures in perimenopausal women: the results of the baseline postal enquiry of the Kuopio Osteoporosis Risk Factor and Prevention Study. Maturitas 1993; 17:89-100.

142. Seeman E. The dilemma of osteoporosis in men. Am J Med 1995; 98:76S-88S.

143. Soule SG, Conway G, Prelevic GM, Prentice M, Ginsburg J, Jacobs HS. Osteopenia as a feature of the androgen insensitivity syndrome. Clin Endocrinol 1995; 43:671-675.

144. Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC. Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J Clin Invest 1997; 100:1755-1759.

145. Eisman JA. Pharmacogenetics of the vitamin D receptor and osteoporosis. Drug Metab Dispos 2001; 29:505-512.

146. Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC Jr. Genetic determinants of bone mass in adult women: a re-evaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 1991; 6:561-567.

147. Kelly PJ, Nguyen T, Hopper J, Pocock N, Sambrook P, Eisman J. Changes in axial bone density with age: A twin study. J Bone Miner Res 1993; 8:11-17

148. Nguyen TV, Howard GM, Kelly PJ, Eisman J. Bone mass, lean mass, and fat mass: Same genes or same environments? Am J Epidemiol 1998; 147:3-16.

149. Sowers MR, Boehnke M, Jannausch ML, Crutchfield M, Corton G, Burns TL. Familiality and partitioning the variability of femoral bone mineral density in women of child-bearing age. Calcif Tissue Int 1992; 50:110-114.

150. Diaz MN, O'Neill TW, Silman AJ. The influence of family history of hip fracture on the risk of vertebral deformity in men and women: The European Vertebral Osteoporosis Study. Bone 1997; 20:145-149.

151. Evans RA, Marel GM, Lancaster EK, Kos S, Evans M, Wong SY. Bone mass is low in relatives of osteoporotic patients. Ann Intern Med 1998; 109:870-873.

152. Pocock N, Eisman J, Gwinn T, Sambrook P, Kelly P, Freund J, Yeates M. Muscle strength, physical fitness, and weight but not age predict femoral neck bone mass. J Bone Miner Res 1989; 4:441-448.

153. Young D, Hooper JL, Nowson CA, Green RM, Sherwin AJ, Kaymakci B, Smid M, Guest CS, Larkins RG, Wark JD. Determinants of bone mass in 10- to 26-year-old females: a twin study. J Bone Miner Res 1995; 10:558-567.

154. Sessions ND, Halloran BP, Bikle DD, Wronski TJ, Cone CM, Morey-Holton E. Bone response to normal weight bearing after a period of skeletal unloading. Am J Physiol 1989; 257:E606-E610.

155. Kroger H, Tuppurainen M, Honkanen R, Alhava E, Saarikoski S. Bone mineral density and risk factors for osteoporosis: a population-based study of 1600 perimenopausal women. Calcif Tissue Int 1994; 55:1-7.

156. Lonzer MD, Imrie R, Rogers D, Worley D, Licata A, Secic M. Effects of heredity, age, weight, puberty, activity, and calcium intake on bone mineral density in children. Clin Pediatr (Phila) 1996; 35:185-189.

Ulrich CM, Georgiou CC, Snow-Harter CM, Gillis DE. Bone mineral density in mother-daughter pairs: Relations to lifetime exercise, lifetime milk consumption and calcium supplements. Am J Clin Nutr 1996; 63:72-79.

Kelly PJ, Pocock NA, Sambrook PN, Eisman JA. Dietary calcium, sex hormones, and bone mineral density in men. Br Med J 1990; 300:1361-1364.

Jackman LA, Millane SS, Martin BR, Wood OB, McCabe GP, Peacock M, Weaver CM. Calcium retention in relation to calcium intake and postmenarcheal age in adolescent females. Am J Clin Nutr 1997; 66:327-333.

Nakamura T, Turner CH, Yoshikawa T, Slemenda CW, Peacock M, Burr DB, Mizuno Y, Orimo H, Ouchi Y, Johnston CJ. Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J Bone Miner Res 1994; 9: 1071-1076.

Xu L, Lu A, Zhao X, Chen X, Cummings SR. Very low rates of hip fracture in Beijing, People's Republic of China the Beijing Osteoporosis Project. Am J Epidemiol 1996; 144:901 -907.

Peel N, Eastell R. Osteoporosis. BMJ 1995; 310:989-992.

Kanis JA, et al. Guidelines for diagnosis and management of osteoporosis. Osteoporosis Int 1997; 7:390-406.

Riggs BL, Melton LJ. The prevention and treatment of osteoporosis. N Engl J Med 1992; 327:620-627.

Gibaldi M. Prevention and treatment of osteoporosis: does the future belong to hormone replacement therapy? J Clin Pharmacol 1997; 37:1087-1099.

Lloyd T, et al. Calcium supplementation and bone mineral density in adolescent girls. JAMA 1993; 270:841-844.

Reid IR, et al. Effect of calcium supplementation on bone loss in postmenopausal women. N Engl J Med 1993; 328:460-464.

Riis B, et al. Does calcium supplementation prevents postmenopausal bone loss? N Engl J Med 1987; 316:173-177.

Altkorn D, Vokes T. Treatment of postmenopausal osteoporosis. JAMA 2001; 285:14151418.

Clemett D, Spencer CM. Raloxifene: a review of its use in post-menopausal osteoporosis. Drugs 2000; 60:379-411.

Gallagher JC, Goldgar D. Treatment of postmenopausal osteoporosis with high doses of synthetic calcitriol: a randomized controlled study. Ann Intern Med 1990; 113:649-655. Tilyard MW, et al. Treatment of postmenopausal osteoporosis with calcitriol or calcium. N Engl J Med 1992; 326:357-362.

Ott SM, Chesnut CH. Calcitriol treatment is not effective in postmenopausal osteoporosis. Ann Intern Med 1989; 110:267-274.

Compston JE. Osteoporosis: management of established disease. Prescribers' J 1997; 37:119-124.

Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA. Prediction of bone density from vitamin D receptor alleles. Nature 1994; 367:284-287. Gong G, Stern HS, Cheng SC, Fong N, Mordeson J, Deng HW, Recker RR. The association of bone mineral density with vitamin D receptor gene polymorphisms. Osteoporosis Int 1999; 9:55-64.

Gomez C, Naves ML, Barrios Y, Diaz JB, Fernandez JL, Salido E, Torres A, Cannata JB. Vitamin D receptor gene polymorphisms, bone mass, bone loss and prevalence of vertebral fracture: differences in postmenopausal women and men. Osteoporosis Int 1999; 10:175182.

Uitterlinden AG, Weel AE, Burger H, Fang Y, van Duijn CM, Hofman A, van Leeuwen JP, Pols HA. Interaction between the vitamin D receptor gene and collagen type I alpha1 gene in susceptibility for fracture. J Bone Miner Res 2001; 16:379-385.

Eisman J. Genetics of osteoporosis, in Osteoporosis 996. In: Papapoulos SEA, ed., New York: Elsevier Science Publishing Co., Inc., pp 131-135.

180. Hauache OM, Lazaretti-Castro M, Andreoni S, Gimeno SG, Brandao C, Ramalho AC, Kasamatsu TS, Kunii I, Hayashi LF, Dib SA, Vieira JG.Vitamin D receptor gene polymorphism: Correlation with bone mineral density in a Brazilian population with insulin-dependent diabetes mellitus. Osteoporos Int 1998; 8:204-210.

181. Eccleshall TR, Garnero P, Gross C, Delmas PD, Feldman D. Lack of correlation between start codon polymorphism of the vitamin D receptor gene and bone mineral density in premenopausal French women: The OFELY study. J Bone Miner Res 1998; 13:31-35.

182. Cooper GS, Umbach DM. Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis [see comments]. J Bone Miner Res 1996; 11:1841-1849.

183. Gong G, Stern H, Cheng S, Fong N, Mordeson J, Deng H, Recker R. The association of bone mineral density with vitamin D receptor gene polymorphisms. Osteoporos Int 1999; 9:55-64.

184. Sainz J, Van Tornout JM, Loro ML, Sayre J, Roe TF, Gilsanz V. Vitamin D-receptor gene polymorphisms and bone density in prepubertal American girls of Mexican descent. N Engl J Med 1997; 337:77-82.

185. Tokita A, Matsumoto H, Morrison NA, Tawa T, Miura Y, Fukamauchi K, Mitsuhashi N, Irimoto M, Yamamori S, Miura M, et al. Vitamin D receptor alleles, bone mineral density and turnover in premenopausal Japanese women [see comments]. J Bone Miner Res 1996; 11:1003-1009.

186. Hustmyer FG, Peacock M, Hui S, Johnston CC, Christian J. Bone mineral density in relation to polymorphism at the vitamin D receptor gene locus. J Clin Invest 1994; 94:2130-2134.

187. Feskanich D, Hunter DJ, Willett WC, Hankinson SE, Hollis BW, Hough HL, Kelsey KT, Colditz GA.Vitamin D receptor genotype and the risk of bone fractures in women. Epidemiol 1998; 9:535-539.

188. Ensrud K, Stone K, Cauley J, White C, Zmuda J, Nguyen T, Eisman J, Cummings S. Vitamin D receptor gene polymorphisms and the risk of fractures in older women. J Bone Miner Res 1999; 14:1637-1645.

189. Nguyen TV, Morrison NA, Sambrook PN, Kelly PJ, Eisman JA. Vitamin D receptor gene and osteoporosis. J Clin Endocrinol Metab 1996; 81:1674-1675.

190. Dawson-Hughes B, Harris SS, Finneran S. Calcium absorption on high and low calcium intakes in relation to vitamin D receptor genotype. J Clin Endocrinol Metab 1995; 80:3657-3661.

191. Ongphiphadhanakul B, Rajatanavin R, Chanprasertyothin S, Chailurkit L, Piaseu N, Teerar-ungsikul K, Sirisriro R, Komindr S, Puavilai G. Vitamin D receptor gene polymorphism is associated with urinary calcium excretion but not with bone mineral density in postmenopau-sal women. J Endocrinol Invest 1997; 20:592-596.

192. Ames S, Ellis K, Gunn S, Copeland K, Abrams S. Vitamin D receptor gene Fok1 polymorphism predicts calcium absorption and bone mineral density in children. J Bone Miner Res 1999; 14:740-746.

193. Ferrari S, Rizzoli R, Chevalley T, Slosman D, Eisman JA, Bonjour JP. Vitamin-D-receptor-gene polymorphisms and change in lumbar-spine bone mineral density. Lancet 1995; 345:423-424.

194. Krall EA, Dawson-Hughes B. Soft tissue body composition: Familial resemblance and independent influences on bone mineral density. J Bone Miner Res 1995; 10:1944-1950.

195. Barger-Lux MJ, Heaney RP, Hayes J, DeLuca HF, Johnson ML, Gong G. Vitamin D receptor gene polymorphism, bone mass, body size and vitamin D receptor density. Calcif Tissue Int 1995; 57:161-162.

196. Tokita A, Kelly PJ, Nguyen TV, Qi JC, Morrison NA, Risteli L, Risteli J, Sambrook PN, Eisman JA. Genetic influences on type I collagen synthesis and degradation: Further evidence for genetic regulation of bone turnover. J Clin Endocrinol Metab 1994; 78:1461-1466.

197. YamagataZ, Miyamura T, Iijima S, Asaka A, Sasaki M, Kato J, Koizumi K. Vitamin D receptor gene polymorphism and bone mineral density in healthy Japanese women. Lancet 1994; 344:1027.

198. Shiraki M, Shiraki Y, Aoki C, Hosoi T, Inoue S, Kaneki M, Ouchi Y. Association of bone mineral density with apolipoprotein E phenotype. J Bone Miner Res 1990; 12:1438-1445.

199. Graafmans WC, Lips P, Ooms ME, van Leeuwen JP, Pols HA, Uitterlinden AG. The effect of vitamin D supplementation on the bone mineral density of the femoral neck is associated with vitamin D receptor genotype. J Bone Miner Res 1997; 12:1241-1245.

200. Marc J, Prezelj J, Komel R, Kocijancic A. VDR genotype and response to etidronate therapy in late postmenopausal women. Osteoporos Int 1999; 10:303-306.

201. Deng HW, Li J, Li JL, Johnson M, Gong G, Davis KM, Recker RR. Change of bone mass in postmenopausal Caucasian women with and without hormone replacement therapy is associated with vitamin D receptor and estrogen receptor genotypes. Hum Genet 1998; 103:576585.

202. Kurabayashi T, Tomita M, Matsushita H, Yahata T, Honda A, Takakuwa K, Tanaka K. Association of vitamin D and estrogen receptor gene polymorphism with the effect of hormone replacement therapy on bone mineral density in Japanese women. Am J Obstet Gynecol 1999; 180:1115-1120.

203. Palomba S, Numis FG, Mossetti G, Rendina D, Vuotto P, Russo T, Zullo F, Nappi C, Nun-ziata V. Raloxifene administration in post-menopausal women with osteoporosis: effect of different BsmI vitamin D receptor genotypes. Hum Reprod 2003; 18:192-198.

204. Arai H, Miyamoto K, Taketani Y, Yamamoto H, Iemori Y, Morita K, Tonai T, Nishisho T, Mori S, Takeda E. A vitamin D receptor gene polymorphism in the translation initiation codon: Effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res 1997; 12:915-921.

205. Gennari L, Becherini L, Masi L, Mansani R, Gonnelli S, Cepollaro C, Martini S, Montagnani A, Lentini G, Becorpi AM, Brandi ML. Vitamin D and estrogen receptor allelic variants in Italian postmenopausal women: Evidence of multiple gene contribution to bone mineral density. J Clin Endocrinol Metab 1998; 83:939-944.

206. Duncan EL, Brown MA, Sinsheimer JS, Carr JA, Wordsworth BP, Wass JAH. Candidate gene linkage screen in osteoporosis. Bone 1998; 23:S160.

207. Masi L, Becherini L, Colli E, Gennari L, Mansani R, Falchetti A, Becorpi AM, Cepollaro C, Gonnelli S, Tanini A, Brandi ML. Polymorphisms of the calcitonin receptor gene are associated with bone mineral density in postmenopausal Italian women. Biochem Biophys Res Commun 1998; 248:190-195.

208. Tsukamoto K, Yoshida H, Watanabe S, Suzuki T, Miyao M, Hosoi T, Orimo H, Emi M. Association of radial bone mineral density with CA repeat polymorphism at the interleukin 6 locus in postmenopausal Japanese women. J Hum Genet 1999; 44:148-151.

209. Keen RW, Woodford-Richens KL, Lanchbury JS, Spector TD. Allelic variation at the inter-leukin-1 receptor antagonist gene is associated with early postmenopausal bone loss at the spine. Bone 1998; 23:367-371.

210. Keen RW, Snieder H, Daniels J, Davies H, Chiano M, MacGregor AJ, Gewert D, Spector TD. A novel TGF-1 gene polymorphism is linked and associated with hip BMD in female twins. Bone 1998; 23:S161.

211. Langdahl BL, Knudsen JY, Jensen HK, Gregersen N, EriksenEF. A sequence variation: 713-8delC in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone 1997; 20:289-294.

212. Rosen CJ, Donahue LR. Insulin-like growth factors and bone: The osteoporosis connection revisited. Proc Soc Exp Biol Med 1998; 219:1-7.

Get The Body Of Your Dreams

Get The Body Of Your Dreams

Everybody wants to lose weight. This is one fact that is supported by the countless weight loss programs on the market along with the numerous weight loss products, ranging from snack bars, powdered juices, shakes and even slimming soaps and lotions.

Get My Free Ebook


Post a comment