References

1. Schmidlin P, Kühler WK, Doll J, Strauss LG, Ostertag H. Image processing in whole body positron emission tomography. In: Schmidt HAE, Csernay L, eds. Nuklearmedizin. Stuttgart, Germany: Schattauer, 1987:84-87.

2. Strauss LG, Clorius JH, Schlag P, et al. Recurrence of colorectal tumors: PET evaluation. Radiology 1989; 170:329-332.

3. Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med 1997; 24:258-265.

4. Alenius S. On noise reduction in iterative image reconstruction algorithms for emission tomography: median root prior. Thesis for the degree of Doctor of Technology, Tampere, Finland, 1999.

5. Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991; 32:623-648.

6. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002; 43:871-875.

7. Hubner KF, Buonocore E, Gould HR, Thie J, Smith GT, Stephens Dickey J. Differentiating benign from malignant lung lesions using "quantitative" parameters of FDG PET images. Clin Nucl Med 1996; 21:941-949.

8. Burger C, Buck A. Requirements and implementation of a flexible kinetic modeling tool. J Nucl Med 1997; 38:1818-1823.

9. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3(1):1-7.

10. Ohtake T, Kosaka N, et al. Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. J Nucl Med 1991; 32: 1432-1438.

11. Keiding S, Munk OL, Schiott KM, Hansen SB. Dynamic 2-[18F]fluoro-2-deoxy-D-glu-cose positron emission tomography of liver tumours without blood sampling. Eur J Nucl Med 2000; 27:407-412.

12. Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, Ewerbeck V. The role of quantitative (18)F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 2002; 43:510-518.

13. Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M, Burger C, Heichel T, Willeke F, Mechtersheimer G, Lehnert T. Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med 2001; 42:713-720.

14. Nieweg OE, Pruim J, van Ginkel RJ, et al. Fluorine-18-fluorodeoxy-glucose PET imaging of soft-tissue sarcoma. J Nucl Med 1996; 37:257-261.

15. Sugawara Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL. Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology 1999; 211(1):249-256.

16. Lee HS, Lee HK, Kim HS, Yang HK, Kim WH. Tumour suppressor gene expression correlates with gastric cancer prognosis. J Pathol 2003; 200:39-46.

17. Grabsch H, Takeno S, Parsons WJ, et al. Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer-association with tumour cell proliferation. J Pathol 2003; 200:16-22.

18. Kunkel M, Reichert TE, Benz P, Lehr HA, Jeong JH, Wieand S, Bartenstein P, Wagner W, Whiteside TL. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 2003;97:1015-1024.

19. Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bo-dian C, Slater G, Weiss A, Burstein DE. GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis. Cancer 1998; 83(1):34-40.

20. Minami K, Saito Y, Imamura H, Okamura A. Prognostic significance of p53, Ki-67, VEGF and Glut-1 in resected stage I adenocarcinoma of the lung. Lung Cancer 2002; 38:51-57.

21. Younes M, Brown RW, Stephenson M, Gondo M, Cagle PT. Overexpression of Glut1 and Glut3 in stage I normal cell lung carcinoma is associated with poor survival. Cancer 1997; 15:1046-1051.

22. Haberkorn U, Altmann A, Kamencic H, et al. Glucose transport and apoptosis after gene therapy with HSV thymidine kinase. Eur J Nucl Med 2001; 28:1690-1696.

23. Waki A, Kato H, Yano R, et al. The importance of glucose transport activity as the rate-limiting step of 2-deoxyglucose uptake in tumor cells in vitro. Nucl Med Biol 1998; 25:593-597.

24. Miyakita H, Tokunaga M, Onda H, Usui Y, Kinoshita H, Kawamura N, Yasuda S. Significance of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of renal cell carcinoma and immunohistochemical glucose transporter 1 (GLUT-1) expression in the cancer. Int J Urol 2002; 9:15-18.

25. Higashi K, Ueda Y, Sakurai A, et al. Correlation of Glut-1 glucose transporter expression with 18[F]FDG uptake in non-small cell lung cancer. Eur J Nucl Med 2000; 27:1778-1785.

26. Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL. Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 1996; 37(6):1042-1047.

27. Higashi T, Saga T, Nakamoto Y, et al. Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med 2002; 43:173-180.

28. Strauss LG, Dimitrakopoulou-Strauss A, Koczan D, et al. Glucose transporters and hex-okinases: correlation with FDG kinetics and coexpression with other genes. J Nucl Med 2003; 44(suppl):80P.

29. Dimitrakopoulou-Strauss A, Strauss LG, Koczan D, Thiesen HJ, Bernd L, Haberkorn U. FDG kinetics and association with cyclin-A and VEGF. J Nucl Med 2003; 44(suppl):80P.

30. Rasey S, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002; 43:1210-1217.

31. Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth KJ, Langström B. Rat studies comparing UC-FMAU, 18F-FLT, and 76BR-BFU as proliferation markers. J Nucl Med 2002; 43:1688-1698.

32. Dimitrakopoulou A, Strauss LG, Clorius JH, et al. Studies with positron emission tomography after systemic administration of Fluorine-18-Uracil in patients with liver metastases from colorectal carcinoma. J Nucl Med 1993; 34:1075-1081.

33. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, et al. Intravenous and intra-arterial Oxygen-15 labeled water and Fluorine-18-labeled Fluorouracil in patients with liver metastases from colorectal carcinoma. J Nucl Med 1998; 39:465-473.

34. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, et al. Fluorine-18-Fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J Nucl Med 1998; 39:1197-1202.

35. Tseng YS, Tzeng CC, Chiu AWH, et al. Ha-ras overexpression mediated cell apoptosis in the presence of 5-fluorouracil. Exp Cell Res 2003; 288:403-414.

36. Yoshinare K, Kubota T, Watanabe M, et al. Gene expression in colorectal cancer and in vitro chemosensitivity to 5-fluorouracil: a study of 88 surgical specimens. Cancer Sci 2003; 94:633-638.

37. Guo Y, Kotova E, Chem ZS, et al. MRP8, ATP-binding Cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 20,30-dideoxycytidine and 90-(20-phosphonylmethoxyethyl)adenine. J Biol Chem 2003; 278: 29,509-29,514.

38. Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med 1996; 23:1409-1415.

39. Conti PS, Sordillo EM, Sordillo PP, Schmall B. Tumor localization of alpha-aminoisobu-tyric acid (ABI) in human melanoma heterotransplants. Eur J Nucl Med 1985; 10:45-47.

40. Sordillo PP, DiResta GR, Fissekis J, et al. Tumor imaging with carbon-11 labeled alphaaminoisobutyric acid (AIB) in patients with malignant melanoma. Am J Physiol Imaging 1991; 6:172-175.

41. Uehara H, Miyagawa T, Tjuvajev J, et al. Imaging experimental brain tumors with 1ami-nocyclopentane carboxylic acid and alpha-aminoisobutyric acid: comparison to fluoro-deoxyglucose and diethylenetriaminepentaacetic acid in morphologically defined tumor regions. J Cereb Blood Flow Metab 1997; 17:1239-1253.

42. Dimitrakopoulou-Strauss A, Strauss LG, Goldschmidt H, Oberdorfer F, Kriesten J, van Kaick G. PET with C-11-aminoisobutyric acid (AIB) for diagnostics and therapy management of oncological patients. Radiology 1997; 205:P221.

43. Ishiwata K, Kubota K, Kubota R, Iwata R, Takahashi T, Ido T. Selective 2-[18F]fluor-odopa uptake for melanogenesis in murine metastatic melanomas. J Nucl Med 1991; 32:95-101.

44. Dimitrakopoulou-Strauss A, Strauss LG, Burger C. Quantitative PET studies in pre-treated melanoma patients: a comparison of 6[18F]Fluoro-L-Dopa with 18F-FDG and 15O-Water using compartment and noncompartment analysis. J Nucl Med 2001; 42:248-256.

45. Jacob T, Grahek D, Younsi N, et al. Positron emission tomography with [18F]FDOPA and [18F]FDG in the imaging of small cell lung carcinoma: preliminary results. Eur J Nucl Med Mol Imaging 2003; 30:1266-1269.

46. Belhocine T, Foidart J, Rigo P, et al. Fluorodeoxyglucose positron emission tomography and somatostatin receptor scintigraphy for diagnosing and staging carcinoid tumours: correlations with the pathological indexes p53 and Ki-67. Nucl Med Commun 2002; 23:727-734.

47. Hofmann M, Maecke H, Borner R, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 2001; 28(12):1751-1757.

48. Waldherr C, Pless M, Maecke HR, et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq 90YDOTATOC. J Nucl Med 2002; 43:610-616.

49. Schumacher T, Hofer S, Eichhorn K, et al. Local injection of the 90Y-labelled peptidic vector DOTATOC to control gliomas of WHO grades II and III: an extended pilot study. Eur J Nucl Med 2002; 29:486-493.

50. Wagner S, Eritja R, Zuhayra M, et al. Synthesis and properties of radiolabeled CPTA-oligonucleotides. J Label Compd Radiopharm 2003; 46:175-186.

51. Filetti S, Bidart JM, Arturi F, Caillou B, Russo D, Schlumberger M. Sodium/iodine symporter: a key transport system in thyroid cancer cell metabolism. Eur J Endocrinol 1999; 141:443-457.

52. Dohan O, de la Vieja A, Paroder V, et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocrine Rev 2003; 24:48-77.

53. Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002; 43:1188-1200.

54. Haberkorn U, Kinscherf R, Kissel M, et al. Enhanced iodide transport after transfer of the human sodium iodide symporter gene is associated with lack of retention and low absorbed dose. Gene Therapy 2003; 10:774-780.

0 0

Post a comment