1. Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ. Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 2003; 38:385-402.

2. Di Salle F, Esposito F, Elefante A, et al. High field functional MRI. Eur J Radiol 2003; 48:138-145.

3. Yacoub E, Duong TQ, Van de Moortele PF, et al. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 2003; 49:655-664.

4. Nobauer-Huhmann IM, Ba-Ssalamah A, Mlynarik V, et al. Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus 1.5 tesla. Invest Radiol 2002; 37:114-119.

5. Di Costanzo A, Trojsi F, Tosetti M, et al. High-field proton MRS of human brain. Eur J Radiol 2003; 48:146-153.

6. McGirt MJ, Villavicencio AT, Bulsara KR, Friedman AH. MRI-guided stereotactic biopsy in the diagnosis of glioma: comparison of biopsy and surgical resection specimen. Surg Neurol 2003; 59:277-281.

7. Nabavi A, Gering DT, Kacher DF, et al. Surgical navigation in the open MRI. Acta Neurochir Suppl 2003; 85:121-125.

8. Nimsky C, Ganslandt O, Gralla J, Buchfelder M, Fahlbusch R. Intraoperative low-field magnetic resonance imaging in pediatric neurosurgery. Pediatr Neurosurg 2003; 38: 83-89.

9. de Zwart JA, Ledden PJ, van Gelderen P, Bodurka J, Chu R, Duyn JH. Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magn Reson Med 2004; 51:22-26.

10. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42:952-962.

11. European Federation of Neurological Societies Task Force. The future of magnetic resonance-based techniques in neurology. Eur J Neurol 2001; 8:17-25.

12. Patel MR, Klufas RA. Gradient- and spin-echo MR imaging of the brain. Am J Neuro-radiol 1999; 20:1381-1383.

13. Umek W, Ba-Ssalamah A, Prokesch R, Mallek R, Heimberger K, Hittmair K. Imaging of the brain using the fast-spin-echo and gradient-spin-echo techniques. Eur Radiol 1998; 8:409-415.

14. Hittmair K, Umek W, Schindler EG, Ba-Ssalamah A, Pretterklieber ML, Herold CJ. Fast flair imaging of the brain using the fast spin-echo and gradient spin-echo technique. Magn Reson Imaging 1997; 15:405-414.

15. Moseley ME, Wendland MF, Kucharczyk J. Magnetic resonance imaging of diffusion and perfusion. Top Magn Reson Imaging 1991; 3:50-67.

16. Kucharczyk J, Vexler ZS, Roberts TP, et al. Echo-planar perfusion-sensitive MR imaging of acute cerebral ischemia. Radiology 1993; 188:711-717.

17. de Crespigny AJ, Tsuura M, Moseley ME, Kucharczyk J. Perfusion and diffusion MR imaging of thromboembolic stroke. J Magn Reson Imaging 1993; 3:746-754.

18. Lee SJ, Kim JH, Kim YM, et al. Perfusion MR imaging in gliomas: comparison with histologic tumor grade. Korean J Radiol 2001; 2:1-7.

19. Herlihy AH, Hajnal JV, Curati WL, et al. Reduction of CSF and blood flow artifacts on FLAIR images of the brain with k-space reordered by inversion time at each slice position (KRISP). Am J Neuroradiol 2001; 22:896-904.

20. Castillo M, Mukherji SK. Clinical applications of FLAIR, HASTE, and magnetization transfer in neuroimaging. Semin Ultrasound CT MR 2000; 21:417-427.

21. Rumboldt Z, Marotti M. Magnetization transfer, HASTE, and FLAIR imaging. Magn Reson Imaging Clin N Am 2003; 11:471-492.

22. Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol 2003; 45:169-184.

23. Li TQ, Chen ZG, Hindmarsh T. Diffusion-weighted MR imaging of acute cerebral ischemia. Acta Radiol 1998; 39:460-473.

24. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology 2000; 217:331-345.

25. Roberts TP, Rowley HA. Diffusion weighted magnetic resonance imaging in stroke. Eur J Radiol 2003; 45:185-194.

26. van Rijswijk CS, Kunz P, Hogendoorn PC, Taminiau AH, Doornbos J, Bloem JL. Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging 2002; 15:302-307.

27. Nadal Desbarats L, Herlidou S, de Marco G et al. Differential MRI diagnosis between brain abscesses and necrotic or cystic brain tumors using the apparent diffusion coefficient and normalized diffusion-weighted images. Magn Reson Imaging 2003; 21:645-650.

28. Dorenbeck U, Butz B, Schlaier J, Bretschneider T, Schuierer G, Feuerbach S. Diffusion-weighted echo-planar MRI of the brain with calculated ADCs: a useful tool in the differential diagnosis of tumor necrosis from abscess? J Neuroimaging 2003; 13:330-338.

29. Taylor JS, Reddick WE. Evolution from empirical dynamic contrast-enhanced magnetic resonance imaging to pharmacokinetic MRI. Adv Drug Deliv Rev 2000; 41:91-110.

30. Yang S, Law M, Zagzag D, et al. Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. Am J Neuroradiol 2003; 24:1554-1559.

31. Smith JK, Castillo M, Kwock L. MR spectroscopy of brain tumors. Magn Reson Imaging Clin N Am 2003; 11:415-429, v-vi.

32. Smith JK, Londono A, Castillo M, Kwock L. Proton magnetic resonance spectroscopy of brain-stem lesions. Neuroradiology 2002; 44:825-829.

33. Nelson SJ. Multivoxel magnetic resonance spectroscopy of brain tumors. Mol Cancer Ther 2003; 2:497-507.

34. Rand SD, Prost R, Li SJ. Proton MR spectroscopy of the brain. Neuroimaging Clin N Am 1999; 9:379-395.

35. Mathews VP, Caldemeyer KS, Ulmer JL, Nguyen H, Yuh WT. Effects of contrast dose, delayed imaging, and magnetization transfer saturation on gadolinium-enhanced MR imaging of brain lesions. J Magn Reson Imaging 1997; 7:14-22.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment