1. Infield GB. Disaster at Bari. New York: Macmillan, 1971.

2. Gilman A, Philips FS. The biological actions and therapeutic applications of b-chloroethyl amines and sulfides. Science 1946; 103:409.

3. Skipper HE, Schabel FM, Wilcox WS. Experimental evaluation of potential anticancer agents. XIII: On the criteria and kinetics associated with curability of experimental leukemia. Cancer Chem Rep 1964;35:1-111.

4. Laird AK. Dynamics of growth in tumors and normal organisms. NCI Monogr 1969;30:15-28.

5. Norton L, Simor R. Growth curve of an experimental solid tumor following radiotherapy. J Natl Cancer Inst 1977;58:1735-1741.

6. Norton L, Simor R. Tumor size, sensitivity to therapy and the design of treatment schedules. Cancer Treat Rep 1977;61:1307-1317.

7. Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 1979;63:1727-1733.

8. Iversen OH, Iversen U, Ziegler JL, Bluming AZ. Cell kinetics in Burkitt's lymphoma. Eur J Cancer 1974;10:144-163.

9. Frei E III, Freireich EJ, Gehan E, et al. Studies of sequential and combination antimetabolite therapy in acute leukemia: 6-mercaptopurine and methotrexate. Blood 1961;18:431-454.

10. Ludwig Breast Cancer Study Group. Combination adjuvant chemotherapy for node-positive breast cancer. Inadequacy of a single perioperative cycle. N Engl J Med 1988;319:677-683.

11. Samson MK, Rivlin SE, Jones SE, et al. Dose-response and dose-survival advantage for high- vs. low-dose cisplatin combined with vinblastine and bleomycin in disseminated testicular cancer. Cancer 1984;53:1029-1035.

12. Stadtmauer EA, O'Neill A, Goldstein LJ, et al., and the Philadelphia Bone Marrow Transplant Group. Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metasta-tic breast cancer. N Engl J Med 2000;342(15):1069-1076.

13. Wood WC, Budman DR, Korzun AH, et al. Dose and dose intensity trial of adjuvant chemotherapy for stage II node-positive breast carcinoma. N Engl J Med 1994;330:1253-1259.

14. Seidman AD, Hudis CA, Albanel J, et al. Dose-dense therapy with weekly 1-hour paclitaxel infusions in the treatment of metastatic breast cancer. J Clin Oncol 1998;16:3353-3361.

15. Cohen JL, Jao JY. Enzymatic basis of cyclophosphamide activation by hepatic microsomes of the rat. J Pharmacol Exp Ther 1970;174:206.

16. Colvin M, Padgett CA, Fenselau C. A biologically active metabolite of cyclophosphamide. Cancer Res 1973;33(4):915-918.

17. Cox PJ. Cyclophosphamide cystitis: identification of acrolein as the causative agent. Biochem Pharmacol 1979;28(13):2045-2049.

18. Manoharan A. Carcinoma of the urinary bladder in patients receiving cyclophosphamide. Aust N Z J Med 1984;14(4):507.

19. Braverman AC, Antin JH, Plappert MT, et al. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol 1991;9:1215-1223.

20. DeFronzo RA, Braine HG, Colvin M, et al. Water intoxication in man after cyclophosphamide therapy. Ann Intern Med 1973; 78:861-869.

21. Bressler RB, Huston DP. Water intoxication following moderatedose intravenous cyclophosphamide. Arch Intern Med 1985; 145:548-549.

22. Klein HO, Wickramanayake PD, Coerper C, et al. High dose ifos-famide and mesna as continuous infusion over five days: a phase I/II trial. Cancer Treat Rev 1983;10(suppl A):167-173.

23. Goren MP, Wright RK, Pratt CB, Pell FE. Dechloroethylation of ifosfamide and neurotoxicity. Lancet 1986;2:1219-1220.

24. Moncrieff M, Foot A. Fanconi syndrome after ifosfamide. Cancer Chemother Pharmacol 1989;23(2):121-122.

25. Curtin JP, Koonings PP, Gutierrez M, et al. Ifosfamide-induced neurotoxicity. Gynecol Oncol 1991;42(3):193-196.

26. Wakaki S, Marumo H, Tomoka K. Isolation of new fractions of antitumor mitomycins. Antibiot Chemother 1958;8:228-240.

27. Lin AJ, Cosby LA, Shansky CW, et al. Potential bioreductive alkylating agents: 1. Benzoquinone derivatives. J Med Chem 1972;15:1247-1252.

28. Tomasz M, Chawla AK, Lipman R. Mechanism of monofunc-tional and bifunctional alkylation of DN by mitomycin C. Biochemistry 1988;27:3182-3187.

29. Colvin M, Bundrett RB, Cowens W, et al. A chemical basis for the antitumor activity of chloroethylnitrosorueas. Biochem Pharmacol 1976;25:695-699.

30. Baril BB, Baril EF, Lazlo J, et al. Inhibition of rat liver DNA poly-merase by nitrosourea and isocyanates. Cancer Res 1975; 35(1):1-5.

31. Kann HE Jr, Kohn KW, Lyles JM. Inhibition of DNA repair by the 1,3-bis (2-choroethyl)-1-nitrosoureas breakdown product, 2-chloroethyl isocyanate. Cancer Res 1974;34(2):398-402.

32. Kann HE Jr, Kohn KW, Widerlite L, et al. Effects of 1,3-bis (2-chloroethyl)-1-nitrosourea and related compounds on nuclear RNA metabolism. Cancer Res 1974;34(8):1982-1988.

33. DeVita VT, Carbone PP, Owens AH, Jr, et al. Clinical trials with 1,3-bis (2-chloroethyl)-1-nitrosourea, NSC-409962. Cancer Res 1965;25:1876-1881.

34. Schein PS, O'Connell MJ, Blom J, et al. Clinical antitumor activity and toxicity of streptozotocin (NSC-85998). Cancer (Phila) 1974;34:993-1000.

35. Hassan M, Oberg G, Ehrsson H, et al. Pharmacokinetic and metabolic studies of high-dose busulphan in adults. Eur J Clin Pharmacol 1989;36:525-530.

36. Roberts JJ, Warwick GP. Mode of action of alkylating agents: formation of S-methylcysteine from ethyl methanesulphonate in vivo. Nature (Lond) 1957;179:1181.

37. Skinner WA, Gram HF, Greene MO, et al. Potential anticancer agents. XXXI. The relationship of chemical structure to anti-leukemic activity with analogues. J Med Pharmaceut Chem 1960;2:299.

38. Vassal G, Challine D, Koscielny S, et al. Chronopharmacology of high-dose busulfan in children. Cancer Res 1993;53:1534-1537.

39. Chabner BA, Sponzo R, Hubbard S, et al. High dose intermittent intravenous infusion of procarbazinde (NSC-77213). Cancer Chemother Rep 1973;57:361-363.

40. Liske R. A comparative study of cyclophosphamide and PCB on the antibody production in mice. Clin Exp Immunol 1973;15(2): 271-280.

41. Shirakawa S, Fre E III. Comparative effects of the antitumor agents 5-(dimethyltriazeno)imidazole-4-carboxamide and 1,3-bis (2-chloroethyl)-1-nitrosourea on cell cycle of L1210 leukemia cells in vivo. Cancer Res 1970;30:2173-2190.

42. Nicolin A, Bini A, Coronetti E, et al. Cellular immune responses to a drug treated L 51784 lymphoma subline. Nature (Lond) 1974;25(5476):654-655.

43. Buesa JM, Gracia M, Valle M, et al. Phase I trial of intermittent high-dose dacarbazine. Cancer Treat Rep 1984;68:499-504.

44. Tsang LL, Quarterman CP, Gescher A, Slack JA. Comparison of the cytotoxicity in vitro of temozolomide and dacarbazine, pro-drugs of 3-methyl-(trizen-1-nyl) imidazole-4 carboxamide. Cancer Chemother Pharmacol 1991;27(5):342-346.

45. Denny BJ, Wheelhouse RT, Stevens MFG, et al. NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry 1994;33(31):9045-9051.

46. Rosenberg B, Van Camp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature (Lond) 1965;205:698.

47. Reed E, Ostchega Y, Steinberg S, et al. An evaluation of plat-inum-DNA adduct levels relative to known prognostic variables in a cohort of ovarian cancer patients. Cancer Res 1990;50: 2256-2260.

48. Buout JL, Mazard AM, Macquet JP. Kinetics of the reaction of cis-platinum compounds with DNA in vitro. Biochem Biophys Res Commun 1985;133:347-353.

49. Vassilev PM, Kanazirska MP, Charamella LJ, et al: Changes in calcium channel activity in membranes from cis-diammine-dichloroplatinum(II)-resistant and -sensitive L1210 cells. Cancer Res 1987;47:519-522.

50. Uozumi J, Litterst CL. The effect of cisplatin on renal ATPase activity in vivo and in vitro. Cancer Chemother Pharmacol 1985;15:93-96.

51. Cersosimo RJ. Cisplatin neurotoxicity. Cancer Treat Rev 1989; 16:195-211.

52. Go RS, Adjei AA. Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol 1999; 17(1):409-422.

53. Scheeff ED, Briggs JM, Howell SB. Molecular modeling of the intrastrand guanin-guanine DNA adducts produced by cisplatin and oxaliplatin. Mol Pharmacol 1999;5:633-643.

54. Rixe O, Ortuzar W, Alvarez M, et al. Oxaliplatin, tetrapatin, cisplatin and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute's Anticancer Drug Screen panel. Biochem Pharmacol 1996;52(12): 1855-1865.

55. Wang JC. Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q Rev Biophys 1998;3:107-144.

56. Bachur NR, Yu F, Johnson R, et al. Helicase inhibition by anthra-cycline anticancer agents. Mol Pharmacol 1992;41(6):993-998.

57. Doroshow JH. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide and hydroxyl radical production by NADH dehydrogenase. Cancer Res 1983;43:4543-4551.

58. Donella-Deana A, Monti E, Pinna LA. Inhibition of tyrosine protein kinases by the antineoplastic agent adriamycin. Biochem Biophys Res Commun 1989;160(3):1309-1315.

59. Bose R, Verheij M, Haimovitz-Friedman A, et al. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 1995;82(3):405-414.

60. Ryberg M, Nielsen D, Skovsgaard T, et al. Epirubicin cardiotox-icity: analysis of 469 patients with metastatic breast cancer. J Clin Oncol 1998;16:3502-3508.

61. Crespi MD, Ivanier SE, Genovese J, et al. Mitoxantrone affects topoisomerase activities in human breast cancer cells. Biochem Biophys Res Commun 1986;136(2):521-528.

62. Kharasch ED, Novak RF. Inhibition of adriamycin-stimulated microsomal lipid peroxidation by mitoxantrone and ametantrone. Biochem Biophys Res Commun 1982;108(3): 1346-1352.

63. Lazo JS, Chabner BA. Bleomycin. In: Chabner BA, Longo DL (eds). Cancer Chemotherapy and Biotherapy: Principles and Practice. Philadelphia: Lippincott Williams & Wilkins, 2000:466-481.

64. Lazo JS, Sebti SM. Bleomycin. Cancer Chemother Biol Response Modif 94;15:44-50.

65. Dorr RT. Bleomycin pharmacology: mechanism of action and resistance and clinical pharmacokinetics. Semin Oncol 1992; 19(2 suppl 5):3-8.

66. Umezawa H, Mada K, Takeuchi T, et al. New antibiotics, bleomycin A and B. J Antibiot 1966;19(5):200-209.

67. Chabner BA, Myers CE, Coleman CN, Johns DG. The clinical pharmacology of antineoplastic agents. N Engl J Med 1975;292: 107-113, 1159-1168.

68. Ingrassia TS III, Rye JH, Trastek VG, Rosenow EC III. Oxygen-exacerbated bleomycin pulmonary toxicity. Mayo Clinic Proc 1991;66:173-178.

69. Muller W, Crothers D. Studies on the binding of actinomycin and related compounds to DNA. J Mol Biol 1968;35:251-290.

70. Samuels LL, Moccio DM, Sirotnak FM. Similar differential for total polyglutamylation and cytotoxicity among various folate analogues in human and murine tumor cells in vitro. Cancer Res 1985;45:1488-1495.

71. Matherly LH, Voss MK, Anderson LA, et al. Enhanced poly-glutamylation of aminopterin relative to methotrexate in the Ehrlich ascites tumor cell in vitro. Cancer Res 1985;45:1073-1078.

72. Zaharko DS, Dedrick RL, Bischoff KB, et al. Methotrexate tissue distribution: prediction by a mathematical model. J Natl Cancer Inst 1971;46:775-784.

73. Steinberg SE, Campbell CL, Bleyer WA, et al. Enterohepatic circulation of methotrexate in rats in vivo. Cancer Res 1982;42: 1279-1282.

74. Kepka L, De Lassence A, Ribrag V, et al. Successful rescue in a patient with high dose methotrexate-induced nephrotoxicity and acute renal failure. Leuk Lymph 1998;29(1-2):205-209.

75. Erttmann R, Landbeck G. Effect of oral cholestyramine on the elimination of high-dose methotrexate. J Cancer Res Clin Oncol 1985;110:48-50.

76. Chabner BA, Young RC. Threshold methotrexate concentration for in vivo inhibition of DNA synthesis in normal and tumor-ous target tissues. J Clin Invest 1973;52:1804-1811.

77. Cheradame S, Chazal M, Fischel JL, et al. Variable intrinsic sensitivity of human tumor cell lines to raltitrexed (Tomudex) and folylpolyglutamate synthetase activity. Anticancer Drugs 1999; 10(5):505-510.

78. Wang Y, Zhao R, Chattopadhyay S, Goldman ID. A novel folate transport activity in human mesothelioma cell lines with high affinity and specificity for the new-generation antifolate, pemetrexed. Cancer Res 2002;62(22):6434-6437.

79. Shih C, Gosset L, Gates S, et al. LY231514 and its polygluta-mates exhibit potent inhibition against both human dihydrofo-late reductase (DHFR) and thymidylate synthase (TS): multiple folate enzyme inhibition. Ann Oncol 1996;7:85.

80. Illei PB, Rusch VW, Zakowski MF, Ladanyi M. Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res 2003;9:2108-2113.

81. Worzalla JF, Shih C, Schultz RM. Role of folic acid in modulating the toxicity and efficacy of the multitargeted antifolate, LY231514. Anticancer Res 1998;18(5A):3235-3239.

82. Teicher BA, Alvarez E, Liu P, et al. MTA (LY231514) in combination treatment regimens using human tumor xenografts and the EMT-6 murine mammary carcinoma. Semin Oncol 1999;26(2 suppl 6):55-62.

83. Tonkinson JL, Worzalla JF, Teng CH, et al. Cell cycle modulation by a multitargeted antifolate, LY231514, increases the cyto-toxicity and antitumor activity of gemcitabine in HT29 colon carcinoma. Cancer Res 1999;59(15):3671-3676.

84. Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 2003;21(14):2636-2644.

85. Hanna NH, Shepherd FA, Rosell R, et al. A phase III study of pemetrexed vs docetaxel in patients with recurrent c who were previously treated with chemotherapy. Proc Am Soc Clin Oncol 2003;22:622 (abstract 2503).

86. Ensminger WE, Rosowsky A, Raso V. A clinical-pharmacological evaluation of hepatic arterial infusions of 5-fluoro-2-deoxyuri-dine and 5-fluorouracil. Cancer Res 1978;38:3784-3792.

87. Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. Meta-analysis group in cancer. J Clin Oncol 1998;16:301-308.

88. Wiley JS, Jones SP, Sawyer WH, et al. Cytosine arabinoside influx and nucleoside transport sites in acute leukemia. J Clin Invest 1982;69(2):479-489.

89. Heinemann V, Hertel LW, Grindey GB, et al. Comparison of the cellular pharmacokinetics and toxicity of 2'2'-difluorodeoxycy-tidine and 1-beta-D-arabinofuranosylcytosine. Cancer Res 1988; 48(14):4024-4031.

90. Scalliet P, Goor C, Galdermans D, et al. Gemzar (Gemcitabine) with thoracic radiotherapy: a phase II pilot study in chemonaive patients with advanced non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol 1998;17:abstract 1923.

91. Morgan CJ, Chawdry RN, Smith AR. 6-Thioguanine-induced growth arrest in 6-mercapturine resistant human leukemia cells. Cancer Res 1994;4:5387-5393.

92. Zimm S, Collins JM, O'Neill D, et al. Chemotherapy: inhibition of first-pass metabolism in cancer interaction of 6-mercapto-purine and allopurinol. Clin Pharmacol Ther 1983;34:810-817.

93. Li L, Keating MJ, Plunkett W, et al. Fludarabine mediated repair inhibition of cisplatin-induced DNA lesions in human chronic myelogenous leukemia-blast crisis K567 cells: induction of synergistic cytotoxicity independent of reversal of apoptosis. Mol Pharmacol 1997;52:798-806.

94. Gandhi V, Estey E, Du M, et al. Minimum dose of fludarabine for the maximal modulation of 1-beta-D-arabinofuranosylcyto-sine triphosphate in human leukemia blasts during therapy. Clin Cancer Res 1997;3:1539-1545.

95. Leoni LM, Chao Q, Cottam HB, et al. Induction of an apoptotic program in cell free extracts by 2-chloro-2'-deoxyadenosine 5'-triphosphate and cytochrome C. Proc Natl Acad Sci USA 1998;95:9567-9571.

96. Wortmann RL, Mitchell BS, Edwards NL. Biochemical basis for differential deoxyadenosine toxicity to T and B lymphoblasts: role for 5-nucleotides. Proc Natl Acad Sci USA 1979;76: 2434-2437.

97. Mitchison T, Kirchner M. Dynamic instability of microtubule growth. Nature (Lond) 1984;312:237-242.

98. Rao S, Krauss NE, Heerding JM, et al. 3'-(_p-Azidobenzamido) taxol photolabels the N-terminal 31 amino acids of ß-tubulin. J Biol Chem 1994;269:3132-3134.

99. Van der Zee AG, Hollema H, de Jong S, et al. P-glycoprotein expression and DNA topoisomerase I and II activity in benign tumors of the ovary and in malignant tumors of the ovary, before and after platinum/cyclophosphamide chemotherapy. Cancer Res 1991;51:5915-5920.

100. Husain I, Mohler JL, Seigler HF, et al. Elevation of topoisomerase messenger RNA, protein and catalytic activity in human tumors: demonstration of tumor-type specificity and implications for cancer chemotherapy. Cancer Res 1994;54:539-546.

101. Holm C, Covey JM, Kerrigan D, et al. Differential requirement of DNA replication for the cytotoxicity of DNA topoisomerase

I and II inhibitors in Chinese hamster DC3F cells. Cancer Res 1989;49:6365-6368.

102. D'Arpa P, Beardmore C, Liu LF. Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer (Phila) 1990;50:6919-6924.

103. Hsiang YH, Lihous MG, Liu LF. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 1989; 49:5077-5082.

104. Guichard S, Terret C, Hennebell I, et al. CPT-11 converting car-boxylesterase and topoisomerase activities in tumor and normal colon and liver tissues. Br J Cancer 1999;80:364-370.

105. Wozniak AJ, Ross WE. DNA damage as a basis for 4'-demethylepipodophyllotoxin-9-(4,6-0-ethylidene-beta-d-glucopyranoside)(etoposide) cytotoxicity. Cancer Res 1983;43: 120-124.

106. Lilleyman JS, Lennard L. Mercaptopurine metabolism and risk of relapse in childhood lymphoblastic leukemia. Lancet 1994; 343:1188-1190.

107. Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyl-transferase activity. Am J Hum Genet 1980;32:651-662.

108. Tai HL, Krynetski EY, Schuetz EG, et al. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci USA 1997;94:6444-6449.

109. Salonga D, Danenberg KD, Johnson M, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase and thymidine phosphorylase. Clin Cancer Res 2000;6(4):1322-1327.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment