Surgical Repair

FIGURE 8.5. (A) The posterolateral rotatory instability test. In patients who have posterolateral instability, the examiner can elicit guarding or frank joint subluxation with this maneuver. (B) Lateral stress radiograph depicting this provocative maneuver in a patient who has posterolateral elbow instability. This radiograph shows gaping at the ulnohumeral articulation and posterior translation of the radial head now projecting posterior to the center of the capitellum.

FIGURE 8.5. (A) The posterolateral rotatory instability test. In patients who have posterolateral instability, the examiner can elicit guarding or frank joint subluxation with this maneuver. (B) Lateral stress radiograph depicting this provocative maneuver in a patient who has posterolateral elbow instability. This radiograph shows gaping at the ulnohumeral articulation and posterior translation of the radial head now projecting posterior to the center of the capitellum.

The most common abnormality leading to posterolateral instability of the elbow is disruption of the collateral ligament and musculotendinous extensor origins at the humeral epicondyle. In children, a simple reefing of the lateral soft tissues might successfully treat the instability. However, in adults, reconstruction of the collateral ligament with a free autogenous tendon graft typically is necessary to stabilize the lateral portion of the elbow.14 The palmaris longus tendon is most commonly harvested for this purpose.

The surgeon may perform the procedure while the pa tient is under regional anesthesia with a long-acting axillary block. To confirm the diagnosis of posterolateral rotatory instability of the elbow, he or she conducts an examination under anesthesia. Next, an extended Kocher incision is made that begins along the supracondylar humeral ridge and passes distally over the radiocapitel-lar joint toward the ulna.15 The interval between the an-coneus and the extensor carpi ulnaris is defined. The an-coneus is reflected posteriorly with the triceps along the supracondylar humeral ridge (Fig. 8.7). The extensor carpi ulnaris is retracted anteriorly, revealing the deep

FIGURE 8.6. Magnetic resonance imaging in a patient who has documented posterolateral instability of the elbow. Note the posterior subluxation of the radiocapitellar joint. This scan also depicts altered signal intensity and decreased definition of the origin of the collateral ligament and common extensor tendon origins at the lateral humeral epicondyle.

FIGURE 8.6. Magnetic resonance imaging in a patient who has documented posterolateral instability of the elbow. Note the posterior subluxation of the radiocapitellar joint. This scan also depicts altered signal intensity and decreased definition of the origin of the collateral ligament and common extensor tendon origins at the lateral humeral epicondyle.

collateral and annular ligament layer with the overlying fibers of the supinator.

The ulnohumeral and inferior radiocapitellar articulations can be inspected by incising the posterior joint capsule in the soft spot, which is in the triangular area formed by the palpable epicondyle, radial head, and ulna. This capsular tissue is very thin and of little functional im-portance.6 The cartilage surfaces can be inspected, and any synovitis within the joint can be excised. Care must be taken to incise the capsule only up to the most proximal margin of the radial head. This margin marks the proximal extent of the fibers of the radial collateral and annular ligamentous complex (see Fig. 8.1).

The dissection of the extensor carpi ulnaris is carried back to the humeral epicondyle, and the entire common extensor tendon and ligamentous origin can be reflected anteriorly off the epicondyle. This origin is best released from posterior and inferior to anterior and superior. The release allows full exposure of the capitellum and epi-condyle. The origin later is advanced and repaired back to the humerus. A burr can be used to roughen up the area of origin down to bleeding subchondral bone to aid in healing. Distally, the proximal ulna must be exposed adequately to identify the supinator crest just posterior to the radial head. Maximum supination of the forearm clearly demonstrates subluxation of the ulnohumeral and radiocapitellar joints due to insufficient lateral joint support.

Next, the surgeon drills holes for placement of the free tendon graft (Fig. 8.7B). The center of rotation, or isometric origin, of the lateral ligamentous complex of the elbow is at the base of the epicondylar teardrop where the epicondyle flattens onto the lateral aspect of the capitellum. This point is at the center of the trochlea and capitellum and is at the intersection of a line connecting the anterior cortex of the humerus with the center of the radial head when reduced.1617 An entry hole is placed with its distal margin at the isometric point and drilled out posteriorly and superiorly using sequential drill bits. A second posterior hole is positioned inferior to the first and connected to the isometric entry hole. The surgeon uses curettes to create tunnels that are approximately 4 mm in diameter. The free tendon graft then can be threaded through the isometric point posteriorly, through the second hole, and back into the isometric point, allowing for a two-ply graft at this point (Fig. 8.7C). A suture placed through the end of the graft and a ligature passer aid in threading the graft.

When fashioning the ulnar tunnels, the surgeon must understand the normal insertion of the lateral collateral and annular ligament complex. The ligament inserts along the supinator crest of the proximal ulna only several millimeters posterior to the proximal radioulnar joint. Using sequential drill bits, the surgeon makes an entry hole several millimeters distal to the proximal margin of the radial head. An exit hole is created along the supinator crest approximately 1.5 cm distal to the first hole. The osseous bridge should be at least 1 cm long to provide stability. Curettes are used to create a tunnel between these drill holes. If the surgeon has not had experience defining the proximal isometric point on the humerus, a free suture can be used for this purpose once the ulnar tunnel has been drilled1 (Fig. 8.7B).

The free tendon graft is then threaded through the ul-nar tunnel. Usually, the length of the graft is adequate to pass each free end through the tunnel (i.e., one end passed distal to proximal and one end passed proximal to distal), allowing a four-ply tendon graft. Care must be taken to clean these tunnels adequately to allow a crossed passage of the graft (Fig. 8.7E). Alternatively, if the length is insufficient, the graft can be passed once distally, yielding a three-ply graft.

We reattach the original collateral ligament and extensor tendon origin before final securing of the graft. The forearm is flexed to approximately 45° and fully pronated, reducing the posterolateral joint subluxation. With the aid of suture anchors (i.e., one placed slightly distal and one placed just anterior to the isometric point) or drill holes through bone, the ligament and tendon origin is advanced and repaired back to the humerus (Fig. 8.7E). Next, the tendon graft is sutured to itself when pulled taut. The graft strands can be sutured to one another and to the underlying capsule and adjacent collateral ligament complex to reinforce the reconstruction

FIGURE 8.7. (A) Intraoperative photograph during reconstruction for posterolateral instability of the elbow. The anconeus and triceps have been reflected posteriorly. The posterior joint capsule has been opened, allowing inspection of the ulnohumeral joint and the posterior aspect of the radiocapitellar articulation. The capsule can be released distally to the proximal margin of the radial head, which marks the most proximal aspect of the lateral collateral and annular ligament complex. (B) Tunnel placement and course of the free tendon graft. The ulnar tunnel is placed just posterior to the radiocapitellar joint along the supinator crest of the ulna. (C) Intraoperative photograph of the free tendon graft that has been passed through the isometric point, out posteriorly, and back through the isometric point, yielding a two-ply graft at this point. Note the suture that has been placed through the ulnar tunnel to aid in graft passage. (D) Final graft and tunnel placement. (Continues)

FIGURE 8.7. (A) Intraoperative photograph during reconstruction for posterolateral instability of the elbow. The anconeus and triceps have been reflected posteriorly. The posterior joint capsule has been opened, allowing inspection of the ulnohumeral joint and the posterior aspect of the radiocapitellar articulation. The capsule can be released distally to the proximal margin of the radial head, which marks the most proximal aspect of the lateral collateral and annular ligament complex. (B) Tunnel placement and course of the free tendon graft. The ulnar tunnel is placed just posterior to the radiocapitellar joint along the supinator crest of the ulna. (C) Intraoperative photograph of the free tendon graft that has been passed through the isometric point, out posteriorly, and back through the isometric point, yielding a two-ply graft at this point. Note the suture that has been placed through the ulnar tunnel to aid in graft passage. (D) Final graft and tunnel placement. (Continues)

(Fig. 8.7F). The elbow can be taken through a range of motion once the graft is secured. The surgeon now can appreciate the function of the graft, which acts as a reinforcement to the radial collateral and annular ligament complex. It holds up the proximal ulna to the humeral trochlea, and it provides a restraint to the radial head because it prevents the radial head from subluxating laterally from the capitellum in supination. The anconeus and

FIGURE 8.7. (Continued) (E) The graft has now been passed through the ulnar tunnel (one arm from proximal to distal and one from distal to proximal), which now results in a four-ply graft for reconstruction. The common extensor and collateral ligament origins have been advanced and repaired back to the humerus with the aid of bone suture anchors once the joint has been reduced in pronation. Note the running, locking sutures used to reinforce this repair. (F) The tendon graft has now been secured to itself and to the adjacent lateral ligamentous tissues for reinforcement. (G) The triceps and anconeus fasciae are brought anteriorly and repaired to the brachialis and extensor fasciae, completing the reconstruction. The elbow should now be stable throughout a full range of motion without evidence of instability when gently stressed.

extensor fasciae are repaired securely, and the skin is closed in layers (Fig. 8.7G).

A compressive dressing applied with plaster splints maintains the elbow in at least 90° of flexion and neutral or slight pronation. We immobilize the elbow in this position with a cast or splint for 2 or 3 weeks. At the end of this time, a progressive range-of-motion program is initiated with interval splinting for protection and support. Active supination is allowed with the elbow flexed past 90°, which locks the lateral joint, and no passive extension or supination is permitted initially. Gradual extension is allowed in pronation, limiting the last 30° of extension for approximately 4 to 6 weeks after surgery. The patient is weaned from the splint at 2 to 3 months after surgery. Strengthening or loading of the elbow is not permitted until approximately 4 to 6 months following reconstruction.

Cure Tennis Elbow Without Surgery

Cure Tennis Elbow Without Surgery

Everything you wanted to know about. How To Cure Tennis Elbow. Are you an athlete who suffers from tennis elbow? Contrary to popular opinion, most people who suffer from tennis elbow do not even play tennis. They get this condition, which is a torn tendon in the elbow, from the strain of using the same motions with the arm, repeatedly. If you have tennis elbow, you understand how the pain can disrupt your day.

Get My Free Ebook


Post a comment