Nonoperative Treatment

Treatment options for UCL injuries vary according to the severity of the injury and the patient's athletic requirements. For ligament strains, the basic treatment princi

FIGURE 7.6. (A) Lateral radiograph shows degenerative osteophyte formation at the anterior ulnohumeral joint (left arrow) and a loose body in the posterior fossa (right arrow). (B) Anteroposterior radiograph shows calcification at the origin of the ulnar collateral ligament. (C) Hyperflexion lateral radiograph demonstrates improved visualization of the spurring at the tip of the ole-cranon process.

FIGURE 7.6. (A) Lateral radiograph shows degenerative osteophyte formation at the anterior ulnohumeral joint (left arrow) and a loose body in the posterior fossa (right arrow). (B) Anteroposterior radiograph shows calcification at the origin of the ulnar collateral ligament. (C) Hyperflexion lateral radiograph demonstrates improved visualization of the spurring at the tip of the ole-cranon process.

ples for any ligament injury apply: cold and heat therapy, rest, nonsteroidal anti-inflammatory medications, range-of-motion and strengthening exercises, therapeutic modalities, and a gradual return to sport participation. For

FIGURE 7.7. Coronal gradient-recalled magnetic resonance imaging of the right elbow of a 20-year-old lacrosse player who had sustained a valgus load to the elbow 12 hours earlier. The ulnar collateral ligament (arrow) is disrupted completely off the humeral insertion. A large joint effusion is evident. Note the increased signal intensity in the flexor-pronator muscle mass inferior to the ligament due to associated contusion. (Courtesy of Hollis G. Potter, MD)

FIGURE 7.7. Coronal gradient-recalled magnetic resonance imaging of the right elbow of a 20-year-old lacrosse player who had sustained a valgus load to the elbow 12 hours earlier. The ulnar collateral ligament (arrow) is disrupted completely off the humeral insertion. A large joint effusion is evident. Note the increased signal intensity in the flexor-pronator muscle mass inferior to the ligament due to associated contusion. (Courtesy of Hollis G. Potter, MD)

overhead athletes, a multidisciplinary approach to recovery (including the athletic trainer, physical therapist, coach, and physician) is used. These sport and medical professionals should pay special attention to sport technique, especially with pitchers, to help the athlete to avoid technical errors that place excessive valgus stress on the medial portion of the elbow.28 Temporarily moving the athlete to a playing position that involves less throwing

FIGURE 7.8. Coronal fat-suppressed, fast-spin, echo magnetic resonance imaging demonstrating osteochondral impaction of the capitellum with marrow edema (arrow) secondary to a valgus load. (Courtesy of Hollis G. Potter, MD)

FIGURE 7.9. Coronal fast-spin, echo magnetic resonance imaging through the right elbow of a 30-year-old professional baseball player who had had an ulnar collateral ligament reconstruction using a palmaris longus tendon graft (arrows). Magnetic resonance imaging obtained after reinjury demonstrates partial-thickness disruption of the proximal aspect of the graft (superior arrow), but no evidence of full-thickness discontinuity. Using appropriate pulse sequences, previous surgery, or orthopedic instrumentation does not preclude diagnostic imaging. (Courtesy of Hollis G. Potter, MD)

FIGURE 7.9. Coronal fast-spin, echo magnetic resonance imaging through the right elbow of a 30-year-old professional baseball player who had had an ulnar collateral ligament reconstruction using a palmaris longus tendon graft (arrows). Magnetic resonance imaging obtained after reinjury demonstrates partial-thickness disruption of the proximal aspect of the graft (superior arrow), but no evidence of full-thickness discontinuity. Using appropriate pulse sequences, previous surgery, or orthopedic instrumentation does not preclude diagnostic imaging. (Courtesy of Hollis G. Potter, MD)

can aid the recovery process. Many athletes who do not pitch but have chronic UCL laxity can adapt their throwing technique to minimize valgus stress and can remain active. However, pitchers who have laxity tend to develop symptoms with repetitive attempts at throwing beyond 75% of their maximal effort.

As with chronic UCL laxity, acute ligament rupture in most athletes can be managed nonoperatively. Patients rarely have significant pain or dysfunction after the initial inflammatory phase resolves, and they can return gradually to most sports. Athletes who participate in sports that involve valgus-loading upper-extremity maneuvers, such as javelin and baseball throwing and volleyball and tennis serving, do not respond as well to nonoperative treatment. They often need surgical treatment in order to return to their preinjury level of function. Rehabilitation programs for athletes who have symptomatic UCL laxity or complete ligament rupture have yielded poor results in returning these high-demand athletes to their previous level of function.

Electromyographic analysis in UCL-deficient throwers shows a paradoxical inhibition of muscle recruitment of the flexor-pronator mass during throwing compared with the results in uninjured throwers.26,31 This inhibi tion might imply that, despite this muscle group's ideal orientation to compensate for the deficient UCL, it might not be able to overcome the tremendous valgus stress occurring across the medial portion of the elbow during the throwing mechanism. This problem, in part, might account for the poor results that rehabilitation alone in these athletes produces.

Baseball For Boys

Baseball For Boys

Since World War II, there has been a tremendous change in the makeup and direction of kid baseball, as it is called. Adults, showing an unprecedented interest in the activity, have initiated and developed programs in thousands of towns across the United States programs that providebr wholesome recreation for millions of youngsters and are often a source of pride and joy to the community in which they exist.

Get My Free Ebook


Post a comment