Football Passing

Shapiro videotaped 12 collegiate football quarterbacks to quantify the dynamics of the passing motion.43 They found results similar to those of Fleisig et al., but discrepancies existed between the magnitudes of certain pa-rameters.43 One explanation for the differences is the sampling rates used for each study.42 Fleisig et al. collected data at 200 Hz, and Rash and Shapiro collected data at 60 Hz.

Although football passing is qualitatively similar to baseball pitching, it requires markedly less force and torque production to decelerate elbow extension than pitching requires. The lower incidence of elbow injury in quarterbacks who repetitively throw than in baseball pitchers may be attributed to the lower forces and torques generated during the deceleration phase.

In junior high and high school, an athlete with a strong arm often becomes a football quarterback and a baseball pitcher. Because of the kinematic differences between the throwing motions, throwing a baseball and throwing a football during the same season could be detrimental to the development of proper mechanics. However, throwing footballs and baseballs in the off-season may have some positive training benefits. This training may especially benefit the adolescent or prepubescent athlete, whose objective should be to develop general fitness and athletic skills without committing to the specialization of one sport.

The motion of throwing a football is qualitatively similar to throwing a baseball (Fig. 2.6). Quantifying the throwing motion in football and comparing it to baseball pitching have been the emphases of recent studies.42,43 To compare and contrast baseball pitching and football passing, Fleisig et al.42 used motion analysis to study 26 baseball pitchers and 26 football quarterbacks. The pitchers threw from a mound to a strike-zone ribbon located 18.4 m away (i.e., regulation distance), and quarterbacks threw drop-back passes an equal distance. The basis for this comparison was the theory that a football could be used as an overload-weighted implement for strengthening the arm of a baseball pitcher. Researchers have documented that overload training can increase ball velocity once pitching with regulation-weight baseballs is re-sumed.44-46

During arm cocking, a quarterback demonstrates greater elbow flexion (range, 100° to 120°) than do pitchers (Fig. 2.6B,C). In addition, during arm cocking, a maximum medial force of 240 to 280 N and a maximum varus torque of 54 N-m are produced at the elbow. During arm acceleration, the elbow reaches a maximum extension velocity of 1760°/sec (Fig. 2.6E). To decelerate the elbow, a quarterback generates a flexion torque of 41 N-m and a compressive force of 620 N. Several kinematic and kinetic differences between baseball pitchers and football passers were found for other joints as well. Rash and

Baseball For Boys

Baseball For Boys

Since World War II, there has been a tremendous change in the makeup and direction of kid baseball, as it is called. Adults, showing an unprecedented interest in the activity, have initiated and developed programs in thousands of towns across the United States programs that providebr wholesome recreation for millions of youngsters and are often a source of pride and joy to the community in which they exist.

Get My Free Ebook

Post a comment