The Work of Cells

In essence, any cell is simply a compartment with a watery interior that is separated from the external environment by a surface membrane (the plasma membrane) that prevents the free flow of molecules in and out of cells. In addition, as we've noted, eukaryotic cells have extensive internal membranes that further subdivide the cell into various compartments, the organelles. The plasma membrane and other cellular membranes are composed primarily of two layers of phospholipid molecules. These bipartite molecules have a "water-loving" (hydrophilic) end and a "water-hating" (hy-drophobic) end. The two phospholipid layers of a membrane are oriented with all the hydrophilic ends directed toward the inner and outer surfaces and the hydrophobic ends buried within the interior (Figure 1-13). Smaller amounts of

▲ FIGURE 1-13 The watery interior of cells is surrounded by the plasma membrane, a two-layered shell of phospholipids. The phospholipid molecules are oriented with their fatty acyl chains (black squiggly lines) facing inward and their water-seeking head groups (white spheres) facing outward. Thus both sides of the membrane are lined by head groups, mainly charged phosphates, adjacent to the watery spaces inside and outside the cell. All biological membranes have the same basic phospholipid bilayer structure. Cholesterol (red) and various proteins (not shown) are embedded in the bilayer. In actuality, the interior space is much larger relative to the volume of the plasma membrane depicted here.

other lipids, such as cholesterol, and many kinds of proteins are inserted into the phospholipid framework. The lipid molecules and some proteins can float sidewise in the plane of the membrane, giving membranes a fluid character. This fluidity allows cells to change shape and even move. However, the attachment of some membrane proteins to other molecules inside or outside the cell restricts their lateral movement. We learn more about membranes and how molecules cross them in Chapters 5 and 7.

The cytosol and the internal spaces of organelles differ from each other and from the cell exterior in terms of acidity, ionic composition, and protein contents. For example, the composition of salts inside the cell is often drastically different from what is outside. Because of these different "microclimates," each cell compartment has its own assigned tasks in the overall work of the cell (Chapter 5). The unique functions and micro-climates of the various cell compartments are due largely to the proteins that reside in their membranes or interior.

We can think of the entire cell compartment as a factory dedicated to sustaining the well-being of the cell. Much cellular work is performed by molecular machines, some housed in the cytosol and some in various organelles. Here we quickly review the major tasks that cells carry out in their pursuit of the good life.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment