Proteins Can Be Removed from Membranes by Detergents or High Salt Solutions

Everyday Roots

Replace Toxic Products in your home

Get Instant Access

Detergents are amphipathic molecules that disrupt membranes by intercalating into phospholipid bilayers and solubi-lizing lipids and proteins. The hydrophobic part of a detergent molecule is attracted to hydrocarbons and mingles with them readily; the hydrophilic part is strongly attracted to water. Some detergents are natural products, but most are synthetic molecules developed for cleaning and for dispersing mixtures of oil and water (Figure 5-39). Ionic detergents, such as sodium deoxycholate and sodium dodecylsulfate (SDS), contain a charged group; nonionic detergents, such as Triton X-100 and octylglucoside, lack a charged group. At very low concentrations, detergents dissolve in pure water as isolated molecules. As the concentration increases, the molecules begin to form micelles—small, spherical aggregates in which hydrophilic parts of the molecules face outward and the hydrophobic parts cluster in the center (see Figure 2-20). The critical micelle concentration (CMC) at which micelles form is characteristic of each detergent and is a function of the structures of its hydrophobic and hydrophilic parts.

region of antibodies. (a) Interaction of protein A with antibodies bound to clathrin-coated vesicles links the vesicles to the bacterial cells. The vesicle-bacteria complexes can then be recovered by low-speed centrifugation. (b) A thin-section electron micrograph reveals clathrin-coated vesicles bound to an S. aureus cell. [See E. Merisko et al., 1982, J. Cell Biol. 93:846. Micrograph courtesy of G. Palade.]

Ionic detergents bind to the exposed hydrophobic regions of membrane proteins as well as to the hydrophobic cores of water-soluble proteins. Because of their charge, these detergents also disrupt ionic and hydrogen bonds. At high concentrations, for example, sodium dodecylsulfate completely denatures proteins by binding to every side chain, a property that is exploited in SDS gel electrophoresis (see Figure 3-32). Nonionic detergents do not denature proteins and are thus useful in extracting proteins from membranes before purifying them. These detergents act in different ways at different concentrations. At high concentrations (above the CMC), they solubilize biological membranes by forming mixed micelles of detergent, phospholipid, and integral membrane proteins (Figure 5-40). At low concentrations (below the CMC), these detergents bind to the hydrophobic regions of most integral membrane proteins, making them soluble in aqueous solution.

Treatment of cultured cells with a buffered salt solution containing a nonionic detergent such as Triton X-100 extracts water-soluble proteins as well as integral membrane proteins. As noted earlier, the exoplasmic and cytosolic domains of integral membrane proteins are generally hydrophilic and sol-

ionic detergents

Was this article helpful?

0 0
Healthy Chemistry For Optimal Health

Healthy Chemistry For Optimal Health

Thousands Have Used Chemicals To Improve Their Medical Condition. This Book Is one Of The Most Valuable Resources In The World When It Comes To Chemicals. Not All Chemicals Are Harmful For Your Body – Find Out Those That Helps To Maintain Your Health.

Get My Free Ebook

Post a comment