Plant Vacuoles Store Small Molecules and Enable a Cell to Elongate Rapidly

Most plant cells contain at least one membrane-limited internal vacuole. The number and size of vacuoles depend on both the type of cell and its stage of development; a single vacuole may occupy as much as 80 percent of a mature plant cell (Figure 5-24). A variety of transport proteins in the vacuolar membrane allow plant cells to accumulate and store water, ions, and nutrients (e.g., sucrose, amino acids) within vacuoles (Chapter 7). Like a lysosome, the lumen of a vacuole contains a battery of degradative enzymes and has an acidic pH, which is maintained by similar transport proteins in the vacuolar membrane. Thus plant vacuoles may also have a degradative function similar to that of lysosomes in animal cells. Similar storage vacuoles are found in green algae and many microorganisms such as fungi.

Like most cellular membranes, the vacuolar membrane is permeable to water but is poorly permeable to the small molecules stored within it. Because the solute concentration is much higher in the vacuole lumen than in the cytosol or extracellular fluids, water tends to move by osmotic flow into vacuoles, just as it moves into cells placed in a hypotonic medium (see Figure 5-18). This influx of water causes both the vacuole to expand and water to move into the cell, creating hydrostatic pressure, or turgor, inside the cell. This pressure is balanced by the mechanical resistance of the cellulose-containing cell walls that surround plant cells. Most plant cells have a turgor of 5-20 atmospheres (atm); their cell walls must be strong enough to react to this pressure in a controlled way. Unlike animal cells, plant cells can elongate extremely rapidly, at rates of 20-75 ^m/h. This elongation,

▲ FIGURE 5-24 Electron micrograph of a thin section of a leaf cell. In this cell, a single large vacuole occupies much of the cell volume. Parts of five chloroplasts and the cell wall also are visible. Note the internal subcompartments in the chloroplasts. [Courtesy of Biophoto Associates/Myron C. Ledbetter/Brookhaven National Laboratory.]

which usually accompanies plant growth, occurs when a segment of the somewhat elastic cell wall stretches under the pressure created by water taken into the vacuole. I

Lower Your Cholesterol In Just 33 Days

Lower Your Cholesterol In Just 33 Days

Discover secrets, myths, truths, lies and strategies for dealing effectively with cholesterol, now and forever! Uncover techniques, remedies and alternative for lowering your cholesterol quickly and significantly in just ONE MONTH! Find insights into the screenings, meanings and numbers involved in lowering cholesterol and the implications, consideration it has for your lifestyle and future!

Get My Free Ebook


Post a comment