1.1 The Diversity and Commonality of Cells

1.2 The Molecules of a Cell

1.3 The Work of Cells

1.4 Investigating Cells and Their Parts

1.5 A Genome Perspective on Evolution


▲ FIGURE 1-1 Cells come in an astounding assortment of shapes and sizes. Some of the morphological variety of cells is illustrated in these photographs. In addition to morphology, cells differ in their ability to move, internal organization (prokaryotic versus eukaryotic cells), and metabolic activities. (a) Eubacteria; note dividing cells. These are Lactococcus lactis, which are used to produce cheese such as Roquefort, Brie, and Camembert. (b) A mass of archaebacteria (Methanosarcina) that produce their energy by converting carbon dioxide and hydrogen gas to methane. Some species that live in the rumen of cattle give rise to >150 liters of methane gas/day. (c) Blood cells, shown in false color. The red blood cells are oxygen-bearing erythrocytes, the white blood cells (leukocytes) are part of the immune system and fight infection, and the green cells are platelets that provide substances to make blood clot at a wound. (d) Large single cells: fossilized dinosaur eggs. (e) A colonial single-celled green alga, Volvox aureus. The large spheres are made up of many individual cells, visible as blue or green dots. The yellow masses inside are daughter colonies, each made up of many cells. (f) A single

Purkinje neuron of the cerebellum, which can form more than a hundred thousand connections with other cells through the branched network of dendrites. The cell was made visible by introduction of a fluorescent protein; the cell body is the bulb at the bottom. (g) Cells can form an epithelial sheet, as in the slice through intestine shown here. Each finger-like tower of cells, a villus, contains many cells in a continuous sheet. Nutrients are transferred from digested food through the epithelial sheet to the blood for transport to other parts of the body. New cells form continuously near the bases of the villi, and old cells are shed from the top. (h) Plant cells are fixed firmly in place in vascular plants, supported by a rigid cellulose skeleton. Spaces between the cells are joined into tubes for transport of water and food. [Part (a) Gary Gaugler/ Photo Researchers, Inc. Part (b) Ralph Robinson/ Visuals Inlimited, Inc. Part (c) NIH/Photo Researchers, Inc. Part (d) John D. Cunningham/Visuals Unlimited, Inc. Part (e) Carolina Biological/Visuals Unlimited, Inc. Part (f) Helen M. Blau, Stanford University. Part (g) Jeff Gordon, Washington University School of Medicine. Part (h) Richard Kessel and C. Shih/Visuals Unlimited, Inc.]

other differences, all cells share certain structural features and carry out many complicated processes in basically the same way. As the story of cells unfolds throughout this book, we will focus on the molecular basis of both the differences and similarities in the structure and function of various cells.

Was this article helpful?

0 0
10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment