Members of Protein Families Have a Common Evolutionary Ancestor

Studies on myoglobin and hemoglobin, the oxygen-carrying proteins in muscle and blood, respectively, provided early evidence that function derives from three-dimensional structure, which in turn is specified by amino acid sequence. X-ray crystallographic analysis showed that the three-dimensional structures of myoglobin and the a and p sub-units of hemoglobin are remarkably similar. Subsequent sequencing of myoglobin and the hemoglobin subunits revealed that many identical or chemically similar residues are found in identical positions throughout the primary structures of both proteins.

Similar comparisons between other proteins conclusively confirmed the relation between the amino acid sequence, three-dimensional structure, and function of proteins. This principle is now commonly employed to predict, on the basis of sequence comparisons with proteins of known structure and function, the structure and function of proteins that have not been isolated (Chapter 9). This use of sequence comparisons has expanded substantially in recent years as the genomes of more and more organisms have been sequenced.

The molecular revolution in biology during the last decades of the twentieth century also created a new scheme

▲ FIGURE 3-10 Evolution of the globin protein family. (Left) A primitive monomeric oxygen-binding globin is thought to be the ancestor of modern-day blood hemoglobins, muscle myoglobins, and plant leghemoglobins. Sequence comparisons have revealed that evolution of the globin proteins parallels the evolution of animals and plants. Major junctions occurred with the divergence of plant globins from animal globins and of myoglobin from hemoglobin. Later gene duplication gave rise to the a and p subunits of hemoglobin. (Right) Hemoglobin is a tetramer of two a and two p subunits. The structural similarity of these subunits with leghemoglobin and myoglobin, both of which are monomers, is evident. A heme molecule (red) noncovalently associated with each globin polypeptide is the actual oxygen-binding moiety in these proteins. [(Left) Adapted from R. C. Hardison, 1996, Proc. Natl. Acad. Sci. USA 93:5675.]

of biological classification based on similarities and differences in the amino acid sequences of proteins. Proteins that have a common ancestor are referred to as homologs. The main evidence for homology among proteins, and hence their common ancestry, is similarity in their sequences or structures. We can therefore describe homologous proteins as belonging to a "family" and can trace their lineage from comparisons of their sequences. The folded three-dimensional structures of homologous proteins are similar even if parts of their primary structure show little evidence of homology.

The kinship among homologous proteins is most easily visualized by a tree diagram based on sequence analyses. For example, the amino acid sequences of globins from bacteria, plants, and animals suggest that they evolved from an ancestral monomeric, oxygen-binding protein (Figure 3-10). With the passage of time, the gene for this ancestral protein slowly changed, initially diverging into lineages leading to animal and plant globins. Subsequent changes gave rise to myoglobin, a monomeric oxygen-storing protein in muscle, and to the a and p subunits of the tetrameric hemoglobin molecule (a2p2) of the circulatory system.

Was this article helpful?

0 0
Lower Your Cholesterol In Just 33 Days

Lower Your Cholesterol In Just 33 Days

Discover secrets, myths, truths, lies and strategies for dealing effectively with cholesterol, now and forever! Uncover techniques, remedies and alternative for lowering your cholesterol quickly and significantly in just ONE MONTH! Find insights into the screenings, meanings and numbers involved in lowering cholesterol and the implications, consideration it has for your lifestyle and future!

Get My Free Ebook

Post a comment