Atomic Bonds and Molecular Interactions

Strong and weak attractive forces between atoms are the glue that holds them together in individual molecules and permits interactions between different biological molecules. Strong forces form a covalent bond when two atoms share one pair of electrons ("single" bond) or multiple pairs of electrons ("double" bond, "triple" bond, etc.). The weak attractive forces of noncovalent interactions are equally important in

"High-energy"

phosphoanhydride bonds

"High-energy"

phosphoanhydride bonds

Adenosine triphosphate (ATP)

of the reactions (right) depends on the rate constants of the forward (kf, upper arrow) and reverse (kr, lower arrow) reactions. In the reaction shown, the forward reaction rate constant is faster than the reverse reaction, indicated by the thickness of the arrows. The ratio of these Keq, provides an informative measure of the relative amounts of products and reactants that will be present at equilibrium. (d) In many cases, the source of energy for chemical reactions in cells is the hydrolysis of the molecule ATP This energy is released when a high-energy phosphoanhydride bond linking the a and p or the p and y phosphates in the ATP molecule (yellow) is broken by the addition of a water molecule. Proteins can efficiently transfer the energy of ATP hydrolysis to other chemicals, thus fueling other chemical reactions, or to other biomolecules for physical work.

determining the properties and functions of biomolecules such as proteins, nucleic acids, carbohydrates, and lipids. There are four major types of noncovalent interactions: ionic interactions, hydrogen bonds, van der Waals interactions, and the hydrophobic effect.

Dr. Atkins New Diet Revolution

Dr. Atkins New Diet Revolution

Wanting to lose weight and dont know where to start? Dr Atkins will help you out and lose weight fast. Learn more...

Get My Free Ebook


Post a comment