References

1. C. elegans Sequencing Consortium. Genome sequence of the nematode Caenorhabditis elegans: a platform for investigating biology. Science 1998; 282:2012-2018.

2. Miller KG, Alfonso A, Nguyen M. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci USA 1996; 93:12593-12598.

3. Mello C, Fire A. DNA transformation Methods. Cel Biol 1995, 48:451-482.

4. Jansen G, Thijssen KL, Werner P, et al. The complete family of genes encoding G proteines of Caenorhabditis elegans. Nature Genet 1999; 21:414-419.

5. Jorgensen EM, Mango S. The art and design of genetic screens: Caenorhabditis elegans. Nature Rev Genet 2002; 3:356-369.

6. Fire A, Xu S, Montgomery, et al. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 1998; 391:806-881.

7. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431:343-349.

8. Kamath RS, Martinez-Campos M, Zipperlen P, et al. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2001; 2:1-10.

9. Kamath RS, Fraser AG, Dong Y, et al. Systemic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003; 421:231-237.

10. Nollen EAA, Garcia SM, van Haaften G, et al. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci USA 2004; 101:6403-6408.

11. Reinke, V. Functional exploration of the C. elegans genome using DNA microarrays. Nat Genet 2002; 32(suppl):541-546.

12. McCarroll SA, Murphy CT, Zou S, Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 2004; 36:197-204.

13. Golden TR, Melov S. Microarray analysis of gene expression with age in individual nematodes. Aging Cell 2004; 3:111-124.

14. White JG, Southgate E, Thomson JN, et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986; 314:1-340.

15. Sulston J, Dew M, Brenner S. Dopaminergic neurons in the nematode C. elegans. J Comp Neurol 1975; 163:215-226.

16. Nass R, Blakely RD. The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annu Rev Pharmacol Toxicol 2003; 43:521-544.

17. Crittenden SL, Kimble J. Confocal methods for Caenorhabditis elegans. Methods Mol Biol 1999; 122:141-151.

18. Miller DM, Shakes DC. Immunofluorescence microscopy. Methods Cell Biol 1995; 48:365-394.

19. Sawin ER. Genetic and cellular analysis of modulated behaviors in Caenorhabditis elegans. 1996. PhD thesis, Massachusetts Institute of Technology.

20. Duerr JS, Frisby DL, Gaskin J, et al. The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J Neurosci 1999; 19:72-84.

21. Lints R, Emmons SW. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFß family signaling pathway and a Hox gene. Development 1999; 126:5819-5831.

22. Loer CM, Kenyon CJ. Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J Neurosci 1993; 13:5407-5417

23. Wintle RF, Van Tol HH. Dopamine signaling in Caenorhabditis elegans-potential for parkinsonism research. Parkinsonism Rel Dis 2001; 7:177-183.

24. Suo S, Sasagawa N, Ishiura S. Identification of a dopamine receptor from Caenorhabditis elegans. Neurosci Lett 2002; 319:13-16.

25. Suo S, Sasagawa N, Ishiura S. Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J Neurochem 2003; 86:869-878.

26. Sanyal S, Wintle RF, Kindt KS, et al. Dopamine modulates the plasticity of mechanosen-sory responses in Caenorhabditis elegans. EMBO J 2004; 23:473-482.

27. Jayanthi LD, Apparsundaram S, Malone MD, et al. The Caenorhabditis elegans gene T23G5.5 encodes an antidepressant- and cocaine-sensitive dopamine transporter. Mol Pharmacol 1998; 54:601-609.

28. Nass R, Hall DH, Miller DM 3rd, et al. Neurotoxin-induced degeneration of dopamine eurons in Caenorhabditis elegans. Proc Natl Acad Sci USA 2002; 99:3264-3269.

29. Lee FJS, Liu F, Pristupa ZB, et al. Direct binding and functional coupling of a-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 2001; 15:916-926.

30. Baumeister R, Ge L. The worm in us—Caenorhabditis as a model of human disease. Trends Biotech 2002; 20:147-148.

31. Lakso M, Vartiainen S, Moilanen AM, et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human a-synuclein. J Neurochem 2003; 86:165-172.

32. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the a-synuclein gene identified in families with Parkinson's disease. Science 1997; 276:2045-2047.

33. Spillantini MG, Schmidt ML, Lee VM, et al. a-Synuclein in Lewy bodies. Nature 1997; 388:839-840.

34. Hallam S, Singer E, Waring D, et al. The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development 2000; 127:4239-4252.

35. Iwasaki K, Staunton J, Saifee O, et al. aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 1997; 18:613-622.

36. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in a-synuclein mice: implications for neurodegenerative disorders. Science 2000; 287:1265-1268.

37. Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature 2000; 404:394-398.

38. van der Putten H, Wiederhold KH, Probst A, et al. Neuropathology in mice expressing human a-synuclein. J Neurosci 2000; 20:6021-6029.

39. Kirik D, Rosenblad C, Burger C, et al. Parkinson-like neurodegeneration induced by t argeted over expression of a-synuclein in the nigrostriatal system. J Neurosci 2002; 22:2780-2791.

40. Lee MK, Stirling W, Xu Y, et al. Human a-synuclein-harboring familial Parkinson's disease-linked Ala-53 ^ Thr mutation causes neurodegenerative disease with a-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 2002; 99:8968-8973.

41. Kuwahara T, Koyama A, Gengyo-Ando K, et al. Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 2006; 281:334-340.

42. Ved R, Saha S, Westlund, et al. Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem 2005; 280:42655-42668.

43. Vartiainen S, Aarnio V, Lakso M, et al. Increased lifespan in transgenic Caenorhabditis elegans overexpressing human alpha-synuclein. Exp Gerontol 2006; 41:871-876.

44. Springer W, Hoppe T, Schmidt E, et al. A Caenorhabditis elegans Parkin mutant with altered solubility couples alpha-synuclein aggregation to proteotoxic stress. Hum Mol Genet 2005; 14:3407-3423.

45. Faber PW, Alter JR, MacDonald ME, et al. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci USA 1999; 96:179-184.

46. Parker JA, Connolly JB, Wellington C, et al. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci USA 2001; 98:13318-13323.

47. Morley JF, Brignull HR, Weyers JJ, et al. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci USA 2002; 99:10417-10422.

48. Satyal SH, Schmidt E, Kitagawa N, et al. Polyglutamine aggregates alter protein-folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci USA 2000; 97:5750-5755.

49. Caldwell GA, Cao S, Sexton EG, et al. Suppression of polyglutamine-induced protein aggregation in Caenorhabditis elegans by torsin proteins. Hum Mol Genet 2003; 12:307-319.

50. McLean PJ, Kawamata H, Shariff S, et al. TorsinA and heat shock proteins act as molecular chaperones: suppression of a-synuclein aggregation. J Neurochem 2002, 83:846-854.

51. Caldwell GA, Cao S, Izevbaye I, et al. Use of C. elegans to model human movement disorders. In: LeDoux M, ed. Animal Model of Movement Disorders, 1st ed. Burlington, MA: Elsevier Academic Press, 2004:111-126.

52. Kraemer BC, Zhang B, Leverenz JB, et al. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 2003; 100:9980-9985.

53. Vartiainen S, Pehkonen P, Lakso M, et al. Identification of gene expression changes in transgenic C. elegans overexpressing human alpha-synuclein. Neurobiol Dis 2006; 22: 477-486.

54. Lucking CB, Durr A, Bonifati V, et al. Association between early-onset Parkinson's disease and mutations in the parkin gene. French Parkinson's disease genetics study group. N Engl J Med 2000; 342:1560-1567.

55. Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson's disease. Nature 1999; 395:451-452.

56. Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science 2003; 299:256-259.

57. Zetterstrom RH, Solomin L, Jansson L, et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 1997; 276:248-250.

58. Smidt MP, Asbreuk CH, Cox JJ, et al. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx 1b. Nat Neuroscience 2000; 3:337-341.

59. Van den Munckhof P, Luk KC, Ste-Marie L, et al. Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 2003; 130:2535-2542.

60. Nunes I, Tovmasian LT, Silva RM, et al. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 2003; 100:4245-4250.

Was this article helpful?

0 0
Peripheral Neuropathy Natural Treatment Options

Peripheral Neuropathy Natural Treatment Options

This guide will help millions of people understand this condition so that they can take control of their lives and make informed decisions. The ebook covers information on a vast number of different types of neuropathy. In addition, it will be a useful resource for their families, caregivers, and health care providers.

Get My Free Ebook


Post a comment