41. Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res. 81: 302-313, 2005.

42. Streit WJ, Walter SA, Pennell NA. Reactive microgliosis. Prog Neurobiol. 57: 563-581, 1999.

43. Nimmerjahn A, Kirchkoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: 1314-1318, 2005.

44. Dringen R. Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal 7: 1223-1233, 2005.

45. Monje ML, Mizumatsu S, Fike JR, Palmer T. Irradiation induced neural precursor-cell dysfunction. Nat Med. 8: 955-961, 2002.

46. Siegal T, Feffer MRP, Meltzer A, Shezen E, Nimrod A, Ezov N, Ovadia H. Cellular and secretory mechanisms related to delayed radiation-induced microvessel dysfunction in the spinal cord of rats. Int J Radiat Oncol Biol Phys. 36: 647-659, 1996.

47. Nakagawa M, Bellinzona M, Seilhan TM, Gobbel GT, Lamborn KR, Fike JR. Microglial responses after focal radiation-induced injury are affected by alpha-difluoromethylornithine. Int J Radiat Oncol Biol Phys. 36: 113-123, 1996.

48. Roman DD, Sperduto PW. Neuropsychological effects of cranial radiation: current knowledge and future directions. Int J Radiat Oncol Biol Phys. 31: 983-998, 1995.

49. Anderson VA, Godber T, Smibert E, Weiskop S, Ekert H. Cognitive and academic outcome following cranial irradiation and chemotherapy in children: a longitudinal study. Br J Cancer 82: 255-262, 2000.

50. Moore III BD, Copeland DR, Ried H, Levy B. Neurophysiological basis of cognitive deficits in long-term survivors of childhood cancer. Arch Neurol. 49: 809-817, 1992.

51. Abayomi OK. Pathogenesis of irradiation-induced cognitive dysfunction. Acta Oncologica 35: 659-663, 1996.

52. Surma-aho O, Niemalä M, Vilkki J, Kouri M, Brander A, Salonen O, Paetau A, Kallio M, Pyykkönen J, Jääskeläinen J. Adverse long-term effects of brain radiotherapy in adult low-grade glioma patients. Neurology 56: 1285-1290, 2001.

53. Bassant MH, Court L. Effect of whole-body gamma irradiation on the activity of rabbit hippocampal neurons. Radiat Res. 75: 595-606, 1978.

54. Pellmar TC, Lepinski DL. Gamma radiation (5-10 Gy) impairs neuronal function in the guinea pig hippocampus. Radiat Res. 136: 255-261, 1993.

55. Noel F, Gumin GJ, Raju U, Tofilon PJ. Increased expression of prohormone convertase-2 in the irradiated rat brain. FASEB J. 12: 1725-1730, 1998.

56. Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol. 36: 249-266, 1998.

57. Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci. 8: 389-404, 1997.

58. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 425: 479-494, 2000.

59. Bellinzona M, Gobbel GT, Shinohara C, Fike JR. Apoptosis is induced in the subependyma of young adult rats by ionizing irradiation. Neurosci Lett. 208: 163-166, 1996.

60. Snyder JS, Kee N, Wojtowicz JM. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol. 85: 2423-2431, 2003.

61. Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-ray irradiation. Cancer Res. 63: 4021-4027, 2003.

62. Raber J, Rola R, LeFevour A, Morhardt D, Curley J, Mizumatsu S, van den Berg SR, Fike JR. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res. 162: 39-47, 2004.

63. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302: 1760-1765, 2003.

64. Chiang CS, Hong JH, Stalder A, Sun JR, Withers HR, McBride WH. Delayed molecular responses to brain irradiation. Int J Radiat Biol. 72: 45-53, 1997.

65. Hong JH, Chiang CS, Campbell IL, Sun JR, Withers HR, McBride WH. Induction of acute phase gene expression by brain irradiation. Int J Radiat Oncol Biol Phys. 33: 619-626, 1995.

66. Daigle JL, Honh JH, Chiang CS, McBride WH. The role of tumor necrosis factor signaling pathways in the response of murine brain to irradiation. Cancer Res. 61: 8859-8865, 2001.

67. Marquette C, Linard C, Galonnier M, van Uye A, Mathieu J, Gourmelon P, Clarencon D. IL-1 beta, TNF-alpha and IL-6 induction in the rat brain after partial-body irradiation: role of vagal afferents. Int J Radiat Biol. 79: 777-785, 2003.

68. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. PNAS. 100: 13632-13637, 2003.

69. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23: 297-308, 1999.

70. Kyrkanides S, Olschowka JA, Williams JP, Hansen JT, O'Banion MK. TNF alpha and IL-1beta mediate intercellular adhesion molecule-1 induction via microglia-astrocyte interaction in CNS radiation injury. J Neuroimmunol. 95: 95-106, 1999.

71. Selmaj MK, Raine CS. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol. 23: 339-346, 1988.

72. Bonetti B, Stegagno C, Cannella B, Rizzuto N, Moretto G, Raine CS. Activation of NF-kB and c-jun transcription factors in multiple sclerosis lesions. Implications for oligodendrocyte pathology. Am J Pathol. 155: 1433-1438, 1999.

73. Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T. TNF-a expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol. 154: 944-953, 1995.

74. Liu J, Marino MW, Wong G, Grail D, Dunn A, Bettadapura J, Slavin AJ, Old L, Bernard CC. TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med. 4: 78-83, 1998.

75. Eugster HP, Frei K, Bachmann R, Bluethmann H, Lassmann H, Fontana A. Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur J Immunol. 29: 626-632, 1999.

76. Shen Y, Li R, Shiosaki K. Inhibition of p75 tumor necrosis factor receptor by antisense oligonucleotides increases hypoxic injury and P-amyloid toxicity in human neuronal cell line. J Biol Chem. 272: 3550-3553, 1997.

77. Cohen EP, Robbins MEC. Radiation nephropathy. Semin Nephrol. 23: 486-499, 2003.

78. Marks LB, Yu X, Vujaskovic Jr. X, Small W, Folz R, Anscher MS. Radiation-induced lung injury. Semin Radiat Oncol. 13: 333-345, 2003.

79. Hopewell JW. The skin: its structure and response to ionizing radiation. Int J Radiat Biol. 57: 751-773, 1990.

80. Martin M, Lefaix JL, Delanian S. TGF-P1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys. 47: 277-290, 2000.

81. Fridovich I. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Ann NY AcadSci. 893: 13-18, 1999.

82. Nordberg J, Arner ESJ. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 31: 1287-1312, 2001.

83. Leigh GJ. Nomenclature of inorganic chemistry. Recommendations. Blackwell Scientific Publications, Oxford, 1990.

84. Kuppusamy P, Zweier JL. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J Biol Chem. 264: 9880-9884, 1989.

85. Baud L, Ardaillou R. Reactive oxygen species: production and role in the kidney. Am J Physiol Renal Fluid Electrolyte Physiol. 251: F765-F776, 1986.

86. McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension. Hypertension 34: 539-545, 1999.

87. Babior BM. NADPH oxidase: an update. Blood 93: 1464-1476, 1999.

88. Weisiger RA, Fridovich I. Mitochondrial superoxide dismutase: site of synthesis and intramitochondrial localization. J Biol Chem. 248: 4793-4796, 1973.

89. Marklund SL. Human copper-containing superoxide dismutase of high molecular weight. PNSA. 79: 7634-7638, 1982.

90. Massey V. Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem. 269: 22459-22462, 1994.

91. Winterbourn CC, Vissers MC, Kettle AJ. Myeloperoxidase. Curr Opin Hematol. 7: 53-58, 2000.

92. Fridovich I. Superoxide anion radical (O-°), superoxide dismutases, and related matters. J Biol Chem. 272: 18515-18517, 1997.

93. Aebi H. Catalase in vitro. Methods Enzymol. 105: 121-126, 1984.

94. Cattani L, Ferri A. The function of NADPH bound to catalase. Boll Soc Ital Biol Sper. 70: 75-82, 1994.

95. Mills GC. Hemoglobin catabolism I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem. 229: 189-197, 1957.

96. Chu FF, Doroshow JH, Esworthy RS. Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase. J Biol Chem. 268: 2571-2576, 1993.

97. Takahashi K, Avissar N, Whitin J, Cohen H. Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme. Arch Biochem Biophys. 256: 677-686, 1987.

98. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from the rat liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta 710: 197-211, 1982.

99. Ghyselinck NB, Dufaure I, Lareyre JJ, Rigaudiere N, Mattei MG, Dufaure JP. Structural organization and regulation of the gene for the androgen-dependent glutathione peroxidase-like protein specific to the mouse epididymis. Mol Endocrinol. 2: 258-272, 1993.

100. Klotz LO, Kroncke KD, Buchczyk DP, Sies H. Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J Nutr. 133: 1448S-1451S, 2003.

101. Fujii J, Ikeda Y. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep. 7: 123-130, 2002.

102. Wood ZA, Poole LB, Karplus PA, Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300: 650-653, 2003.

103. Moneada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 43: 109-142, 1991.

104. Gross SS, Wolin MS. Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol. 57: 737-769, 1995.

105. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochemical J. 298: 249-258, 1994.

106. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochemical J. 357: 593-615, 2001.

107. Ignarro LJ. Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: a unique transduction mechanism for transcellular signaling. Pharmacol Toxicol. 67: 1-7, 1990.

108. Kanner J, Harel S, Granit R. Nitric oxide as an antioxidant. Arch Biochem Biophys. 289: 130-136, 1991.

109. Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 25: 434-456, 1998.

110. Forman HJ, Torres M, Fukuto J. Redox signaling. Mol Cell Biochem. 234-235: 49-62, 2002.

111. Nathan C. Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Invest. 111: 769-778, 2003.

112. Pfeilschifter J, Eberhardt W, Beck K-F. Regulation of gene expression by nitric oxide. Pflugers Arch. 442: 479-486, 2001.

113. Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med. 28: 463-499, 2000.

114. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 82: 47-95, 2001.

115. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 65: 27-33, 1994.

116. Ward JM. DNA damage as the cause of ionizing radiation-induced gene activation. Radiat Res. 138(Suppl.): 85s-88s, 1994.

117. Gallin EK, Green SW. Exposure to gamma-irradiation increases phorbol myristate acetate-induced H2O2 production in human macrophages. Blood 70: 694-701, 1987.

118. Ibuki Y, Goto R. Enhancement of NO production from resident peritoneal macrophages by in vitro g-irradiation and its relationship to reactive oxygen intermediates. Free Radic Biol Med. 22: 1029-1035, 1997.

119. Morales A, Miranda M, Sanchez-Reyes A, Biete A, Fernandez-Checa JC. Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells. Int J Radiat Oncol Biol Phys. 42: 191-203, 1998.

120. Lyng FM, Seymour CB, Mothersill C. Oxidative stress in cells exposed to low levels of ionizing radiation. Biochem Soc Trans. 29: 350-353, 2001.

121. Yoo JC, Pae HO, Choi BM, Kim WI, Kim JD, Kim YM, Chung HT. Ionizing radiation potentiates the induction of nitric oxide synthase by interferon-y (IFN-y) or IFN-y and lipopolysaccharide in BNL CL.2 murine embryonic liver cells: role of hydrogen peroxide. Free Radic Biol Med. 28: 390-396, 2000.

122. Leach JK, van Tuyle G, Lin P-S, Schmidt-Ullrich R, Mikkelsen RB. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 61: 3894-3901, 2001.

123. Leach JK, Black SM, Schmidt-Ullrich RK, Mikkelsen RB. Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. J Biol Chem. 277: 15400-15406, 2002.

124. Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22: 5734-5754, 2003.

125. Clemens MR, Ladner C, Schmidt H, Ehninger G, Einsele H, Buhler E, Waller HD, Gey KF. Decreased essential antioxidants and increased lipid hydroperoxides following high-dose radiochemotherapy. Free Radic Res Commun. 7: 227-232, 1989.

126. Artbery VE, Pryor WA, Jiang L, Sehnert SS, Foster WM, Abrams RA, Williams JR, Wharam Jr. MD, Risby TH. Breath ethane generation during clinical total body irradiation as a marker of oxygen-free-radical-mediated lipid peroxidation: a case study. Free Radic Biol Med. 17: 569-576, 1994.

127. Ueda T, Toyoshima Y, Moritani T, Ri K, Otsuki N, Kushihashi T, Yasuhara H, Hishida T. Protective effect of dipyridamole against lethality and lipid peroxidation in liver and spleen of the ddY mouse after whole-body irradiation. Int J Radiat Biol. 69: 199-204, 1996.

128. Umegaki K, Sugisawa A, Shin SJ, Yamada K, Sano M. Different onsets of oxidative damage to DNA and lipids in bone marrow and liver in rats given total body irradiation. Free Radic Biol Med. 31: 1066-1074, 2001.

129. Lonergan PE, Martin DSD, Horrobin DF, Lynch MA. Neuroprotective effect of eicosapentaenoic acid in hippocampus of rats exposed to y-irradiation. J Biol Chem. 277: 20804-20811, 2002.

130. Srivastava M, Chandra D, Kale RK. Modulation of radiation-induced changes in the xanthine oxyreductase system in the livers of mice by its inhibitors. Radiat Res. 157: 290-297, 2002.

131. Michalowski AS. On radiation damage to normal tissues and its treatment II. Anti-inflammatory drugs. Acta Oncologica 33: 139-157, 1994.

132. Korystov YN, Dobrovinskaya OR, Shaposhnikova VV, Eidus LK. Role of arachidonic acid metabolism in thymocyte apoptosis after irradiation. FEBS Lett. 388: 238-241, 1996.

133. Spitz DR, Azzam EI, Li JJ, Gius D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastat Rev. 23: 311-322, 2004.

134. Packer L, Tritschler HJ, Wessel K. Neuroprotection by the metabolic antioxidant a-lipoic acid. Free Radic Biol Med. 22: 359-378, 1997.

135. Hensley K, Pye QN, Maidt ML, Stewart CA, Robinson KA, Jaffrey F, Floyd RA. Interaction of a-phenyl-N-teri-butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site. J Neurochem. 71: 2549-2557, 1998.

136. Bongarzone ER, Pasquini JM, Soto EF. Oxidative damage to proteins and lipids of CNS myelin produced by in viiro generated reactive oxygen species. J Neurosci Res. 41: 213-221, 1995.

137. Connor JR, Menzies SL. Cellular management of iron in the brain. J Neurol Sci. 134: 33-44, 1995.

138. Zaleska MM, Nagy K, Floyd RA. Iron-induced lipid peroxidation and inhibition of dopamine synthesis in striatum synaptosomes. Neurochemistry 14: 597-605, 1987.

139. Bast A, Haenen GRMM, Doelman CJA. Oxidants and antioxidants: state of the art. Am J Med. 91: 2S-13S, 1991.

140. Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain. Eur J Biochem. 267: 4912-4916, 2000.

141. Smith KJ, Kapoor R, Feltsn PA. Demyelination: the role of reactive oxygen species and nitrogen species. Brain Pathol. 9: 69-92, 1999.

142. Peuchen S, Bolanos JP, Heales SJR, Almeida A, Duchen MR, Clark JB. Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol. 52: 261-281, 1997.

143. Butterfield DA, Howard BJ, LaFontaine MA. Brain oxidative stress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer's disease and Huntington's disease. Curr Med Chem. 8: 815-828, 2001.

144. Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol. 76: 126-152, 2005.

145. Keller JN, Kindy MS, Holtsberg FW, St. Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-keller AJ, Hutchins JB, Mattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci. 18: 687-697, 1998.

146. Sheng H, Kudo M, Mackensen GB, Pearlstein RD, Crapo JD, Warner DS. Mice overexpressing extracellular superoxide dismutase have increased resistance to global cerebral ischemia. Exp Neurol. 163: 392-398, 2000.

147. Lebovitz RM, Zhang H, Vogel H, Cartwright Jr. J, Dionne L, Lu N, Huang S, Matzuk MM. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. PNAS. 93: 9782-9787, 1996.

148. Hornsey S, Myers R, Jenkinson T. The reduction of radiation damage to the spinal cord by postirradiation administration of vasoactive drugs. Int J Radiat Oncol Biol Phys. 18: 1437-1442, 1990.

149. Rezvani M, Hopewell JW, Robbins MEC. Initiation of non-neoplastic late effects: the role of endothelium and connective tissue. Stem Cells. 13(Suppl. 1): 248-256, 1995.

150. Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med. 38: 1433-1444, 2005.

151. Fukuda H, Fukuda A, Zhu C, Korhonen L, Swanpalmer J, Hertzman S, Leist M, Lannering B, Lindholm D, Björk-Eriksson T, Marky I, Blomgren K. Irradiation-induced progenitor cell death in the developing brain is resistant to erythropoietin treatment and caspase inhibition. Cell Death Differ. 11: 1166-1178,

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment