References

Adair, G. S. (1928). A theory of partial osmotic pressures and membrane equilibia, with special reference to the application of Dalton's law to hemoglobin solution in presence of salts. Proc. Roy. Soc. Lond. Ser. A 120, 573—603. Bella, J., Brodsky, B., and Berman, H. M. (1995). Hydration structure of a collagen peptide. Structure 3, 893-906.

Bella, J., Brodsky, B., and Berman, H. M. (1996). Disrupted collagen architecture in the crystal structure of a triple-helical peptide with a Gly—>Ala substitution. Connect. Tissue

Berendsen, H.J. (1962). Nuclear magnetic resonance study of collagen hydration. J. Chem. Phys. 16, 3297-3305.

Bruni, F., Careri, G., and Clegg, J. S. (1989a). Dielectric properties of Artemia cysts at low water contents: Evidence for a percolative transition. Biophys.J. 55, 331-338. Bruni, F., Careri, G., and Leopold, A. C. (1989b). Critical exponents of protonic percolation in maize seeds. Physical. Rev. A 40, 2803-2805.

Cameron, I., Short, N. J., and GD, F (2007). Verification of simple hydration/dehydration methods to characterize multiple water compartments in tendon type 1 collagen. Cell. Biol. Int. 31(6), 531-539.

Cameron, I. L., and Fullerton, G. D. (1990). A model to explain the osmotic pressure behavior of hemoglobin and serum albumin. Biochem. Cell. Biol. 68, 894-898.

Cameron, I. L., Kanal, K. M., and Fullerton, G. D. (2006). Role of protein conformation and aggregation in pumping water into and out of a cell. Cell. Biol. Int. 30, 78-85.

Cameron, I. L., Kanal, K. M., Keener, C. R., and Fullerton, G. D. (1997). A mechanistic view of the non-ideal osmotic and motional behavior of intracellular water. Cell. Biol. Int. 21, 99-113.

Cameron, I. L., Merta, P., and Fullerton, G. D. (1990). Osmotic and motional properties of intracellular water as influenced by osmotic swelling and shrinkage of Xenopus oocytes.

Careri, G., and Giansanti, A. (1979). Lysozyme film hydration events: An IR and gravimetric study. Biopolymers 18, 1187-1203.

Careri, G., Gratton, E., Yang, P. H., and Rupley, J. A. (1980). Correlation of IR spec-troscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements on lysozyme powder. Nature 284, 572-573.

Clegg, J. S. (1978). Interrelationships between water and cellular metabolism in Artemia cysts. VIII. Sorption isotherms and derived thermodynamic quantities. J. Cell. Physiol. 94, 123-137.

Clegg, J. S. (1982). Interrelationships between water and cell metabolism in Artemia cysts. IX. Evidence for organization of soluble cytoplasmic enzymes. Cold Spring Harb. Symp. Quant. Biol. 46(Pt. 1), 23-37.

Clegg, J. S. (1986). Artemia cysts as a model for the study of water in biological systems. Methods Enzymol. 127, 230-239.

Clegg, J. S., Seitz, P., Seitz, W., and Hazlewood, C. F. (1982). Cellular responses to extreme water loss: The water-replacement hypothesis. Cryobiology 19, 306-316.

Clegg, J. S., Zettlemoyer, A. C., and Hsing, H. H. (1978). On the residual water content of dried but viable cells. Experientia 34, 734.

Fuller, M. E., 2nd, andBrey, W. S., Jr. (1968). Nuclear magnetic resonance study of water sorbed on serum albumin. J. Biol. Chem. 243, 274-280.

Fullerton, G. D., and Amurao, M. R. (2006). Evidence that collagen and tendon have monolayer water coverage in the native state. Cell. Biol. Int. 30, 56-65.

Fullerton, G. D., Kanal, K. M., and Cameron, I. L. (2006a). On the osmotically unresponsive water compartment in cells. Cell. Biol. Int. 30, 74-77.

Fullerton, G. D., Kanal, K. M., and Cameron, I. L. (2006b). Osmotically unresponsive water fraction on proteins: Non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration. Cell. Biol. Int. 30, 86-92.

Fullerton, G. D., Nes, E., Amurao, M., Rahal, A., Krasnosselskaia, L., and Cameron, I. (2006c). An NMR method to characterize multiple water compartments on mammalian collagen. Cell. Biol. Int. 30, 66-73.

Fullerton, G. D., Ord, V. A., and Cameron, I. L. (1986). An evaluation of the hydration of lysozyme by an NMR titration method. Biochem. Biophys. Acta 869, 230-246.

Fullerton, G. D., and Rahal, A. (2007). Collagen structure: The molecular source of the tendon magic angle effect. J. Magn. Reson. Imag. 25, 345-361.

Fullerton, G. D., Zimmerman, R. J., Cantu, C., 3rd, and Cameron, I. L. (1992). New expressions to describe solution nonideal osmotic pressure, freezing point depression, and vapor pressure. Biochem. Cell. Biol. 70, 1325-1331.

Fullerton, G. D., Zimmerman, R. J., Kanal, K. M., Floyd, J., and Cameron, I. L. (1993). Methods to improve the accuracy of membrane osmometry measures of protein molecular weight. J. Biochem. Biophys. Methods 20, 299-307.

Haly, A. R., and Snaith, J. W. (1971). Calorimetry of rat tail tendon collagen before and after denaturation: The heat of fusion of its absorbed water. Biopolymers 10, 1681—1699.

Kanal, K. M., Fullerton, G. D., and Cameron, I. L. (1994). A study of the molecular sources of nonideal osmotic pressure of bovine serum albumin solutions as a function of pH. Biophys.J. 66, 153-160.

Klotz, I. M. (1958). Protein hydration and behavior; many aspects of protein behavior can be interpreted in terms of frozen water of hydration. Science 128, 815-822.

Leikin, S., Parsegian, V. A., Yang, W., and Walrafen, G. E. (1997). Raman spectral evidence for hydration forces between collagen triple helices. Proc. Natl. Acad. Sci. USA 94, 11312-11317.

Leikin, S., Rau, D. C., and Parsegian, V. A. (1994). Direct measurement of forces between self-assembled proteins: Temperature-dependent exponential forces between collagen triple helices. Proc. Natl. Acad. Sci. USA 91, 276-280.

Leikin, S., Rau, D. C., and Parsegian, V. A. (1995). Temperature-favoured assembly of collagen is driven by hydrophilic not hydrophobic interactions. Nat. Struct. Biol. 2, 205-210.

Lide, D. R. (2004). ''Handbook of chemistry and physics,'' 85th ed. CRC press, Beca Raton. pp. 6-10.

Ling, G. N. (1972). Hydration of macromolecules. In "Water and Aqueous Solutions: Structure, Thermodynamics and Transport Processes'' (R. A. Horne, ed.), Vol. 1, pp. 663-700. Wiley Interscience, New York.

Luescher, M., Ruegg, M., and Schindler, P. (1974). Effect of hydration upon the thermal stability oftropocollagen and its dependence on the presence ofneutral salts. Biopolymers 13, 2489-2503.

Miles, C. A., and Ghelashvili, M. (1999). Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys.J. 76, 3243-3252.

Miller, S., Janin, J., Lesk, A. M., and Chothia, C. (1987a). The accessible surface area and stability of oligomeric proteins. Nature 328, 834-836.

Miller, S., Janin, J., Lesk, A. M., and Chothia, C. (1987b). Interior and surface ofmonomeric proteins. J. Mol. Biol. 196, 641-656.

Nomura, S., Hiltner, A., Lando, J. B., andBaer, E. (1977). Interaction of water with native collagen. Biopolymers 16, 231-246.

Oncley, J. L. (1941). Evidence from physical chemistry regarding the size and shape of protein molecules from ultra-centrifugation, diffusion, viscosity, dielectric dispersion and double refraction of flow. Ann. N.Y. Acad. Sci. 41, 121-150.

Pagnotta, S. E., and Bruni, F. (2006). The glassy state of water: A 'stop and go' device for biological processes. In "Water and the Cell'' (G. H. Pollack, I. L. Cameron, and D. N. Wheatley, eds.), pp. 93-112. Springer, Dordrecht.

Rahal, A., and Fullerton, G. (2007). Cause of collagen melting: Thermal excitation of single and double water bridges on the protein backbone. Submitted for publication.

Ramachandran, G. N., and Chandrasekharan, R. (1968). Interchain hydrogen bonds via bound water molecules in the collagen triple helix. Biopolymers 6, 1649-1658.

Roh, J. H., Curtis, J. E., Azzam, S., Novikov, V. N., Peral, I., Chowdhuri, Z., Gregory, R. B., and Sokolov, A. P. (2006). Influence of hydration on the dynamics of lysozyme. Biophys.J. 91, 2573-2588.

Rupley, J. A., and Careri, G. (1991). Protein hydration and function. Adv. Prot. Chem. 41, 37-172.

Rupley, J. P., Yang, P. H., and Tollin, G. (1980). Thermodynamic and related studies of water interacting with proteins. In "Water in Polymers'' (S. Rowland, ed.), Vol. 127, pp. 111-132. American Chemical Society, Washington, DC.

Sasaki, N., Shiwa, S., Yagihara, S., and Hikichi, K. (1983). X-ray diffraction studies on the structure of hydrated collagen. Biopolymers 22, 2539—2547.

Schinkel, J. E., Downer, N. W., andRupley, J. A. (1985). Hydrogen exchange oflysozyme powders: Hydration dependence of internal motions. Biochemistry 24, 352—366.

Sun, W. Q. (2000). Dielectric relaxation of water and water-plasticized biomolecules in relation to cellular water organization, cytoplasmic viscosity, and desiccation tolerance in recalcitrant seed tissues. Plant Physiol. 124, 1203—1216.

Vertucci, C. W., andRoos, E. E. (1990). Theoretical basis of protocols for seed storage. Plant Physiol. 94, 1019-1023.

Zhang, J., Zhang, Z., Zhang, W., Fu, Y., Ye, G., and Nin, Z. (1985). Hydration and thermotransition of collagen fibre. In "Water and Ions in Biological Systems'' (A. Pullman, V. Vasilescu, and L. Packer, eds.), pp. 197-214. Plenum, New York.

Zimmerman, R. J., Kanal, K. M., Sanders, J., Cameron, I. L., and Fullerton, G. D. (1995). Osmotic pressure method to measure salt induced folding/unfolding of bovine serum albumin. J. Biochem. Biophys. Methods 30, 113-131.

Was this article helpful?

0 0

Post a comment