References

Albertyn, J., Hohmann, S., Thevelein, J. M., and Prior, B. A. (1994). GPD1, which encodes glycerol-3-phosphate dehydrogenase is essential for growth under osmotic stress in Saccharomyces cerevisiae and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 14, 4135-4144.

Alepuz, P. M., de Nadal, E., Zapater, M., Ammerer, G., and Posas, F. (2003). Osmostress-induced transcription by Hotl depends on a Hogl-mediated recruitment of the RNA Pol II. EMBOJ. 22, 2433-2442.

Alepuz, P. M., Jovanovic, A., Reiser, V., and Ammerer, G. (2001). Stress-induced MAP kinase Hog1 is part of transcription activation complexes. Mol. Cell 7, 767-777.

Ansell, R., Granath, K., Hohmann, S., Thevelein, J. M., and Adler, L. (1997). The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBOJ. 16, 2179-2187.

Bilsland-Marchesan, E., Arino, J., Saito, H., Sunnerhagen, P., and Posas, F. (2000). Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Mol. Cell. Biol. 20, 3887-3895.

Bilsland, E., Molin, C., Swaminathan, S., Ramne, A., and Sunnerhagen, P. (2004). Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol. Microbiol. 53, 1743-1756.

Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E., and Gustin, M. C. (1993). An osmosensing signal transduction pathway in yeast. Science 259, 1760-1763.

Catlett, N. L., Yoder, O. C., and Turgeon, B. G. (2003). Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot. Cell 2, 1151-1161.

Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., Lee, T. I., True, H. L., Lander, E. S., and Young, R. A. (2001). Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323-337.

Clotet, J., Escote, X., Adrover, M. A., Yaakov, G., Gari, E., Aldea, M., de Nadal, E., and Posas, F. (2006). Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J. 25, 2338-2346.

Davenport, K. D., Williams, K. E., Ullmann, B. D., and Gustin, M. C. (1999). Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants. Genetics 153, 1091-1103.

Davenport, K. R., Sohaskey, M., Kamada, Y., Levin, D. E., and Gustin, M. C. (1995). A second osmosensing signal transduction pathway in yeast: Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J. Biol. Chem. 270, 30157-30161.

de Nadal, E., Alepuz, P. M., and Posas, F. (2002). Dealing with osmostress through MAP kinase activation. EMBO Rep. 3, 735-740.

De Nadal, E., Zapater, M., Alepuz, P. M., Sumoy, L., Mas, G., and Posas, F. (2004). The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427, 370-374.

Dihazi, H., Kessler, R., and Eschrich, K. (2004). High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J. Biol.

Chem. 279, 23961-23968.

Esch, R. K., and Errede, B. (2002). Pheromone induction promotes Stell degradation through a MAPK feedback and ubiquitin-dependent mechanism. Proc. Natl. Acad. Sci. USA 99, 9l60-9l65.

Escote, X., Zapater, M., Clotet, J., and Posas, F. (2004). Hogl mediates cell-cycle arrest in Gl phase by the dual targeting of Sicl. Nat. Cell Biol. 6, 997-l002.

Furukawa, K., Hoshi, Y., Maeda, T., Nakajima, T., and Abe, K. (2005). Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol. Microbiol. 56, l246—l26l.

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., and Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 424l—4257.

Hedfalk, K., Bill, R. M., Mullins, J. G., Karlgren, S., Filipsson, C., Bergstrom, J., Tamas, M. J., Rydstrom, J., and Hohmann, S. (2004). A regulatory domain in the C-terminal extension of the yeast glycerol channel Fpslp. J. Biol. Chem. 279, l4954-l4960.

Hohmann, S. (2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66, 300-372.

Jung, U.S., and Levin, D. E. (l999). Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol. Microbiol. 34, l049-l057.

Karlgren, S., Filipsson, C., Mullins, J. G., Bill, R. M., Tamas, M. J., and Hohmann, S. (2004). Identification of residues controlling transport through the yeast aquaglycero-porin Fpsl using a genetic screen. Eur. J. Biochem. 271, 77l-779.

Karlgren, S., Pettersson, N., Nordlander, B., Mathai, J. C., Brodsky, J. L., Zeidel, M. L., Bill, R. M., and Hohmann, S. (2005). Conditional osmotic stress in yeast: A system to study transport through aquaglyceroporins and osmostress signaling. J. Biol. Chem. 280, 7l86-7l93.

Klipp, E., Nordlander, B., Kruger, R., Gennemark, P., and Hohmann, S. (2005). Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23, 975-982.

Krantz, M., Becit, E., and Hohmann, S. (2006). Comparative genomics of the HOG-signalling system in fungi. Curr. Genet. 49, l37-l5l.

Krantz, M., and Hohmann, S. (2006). Employing protein size in the functional analysis of orthologous proteins, as illustrated with the yeast HOG pathway. In "Comparative Genomics: Using Fungi as Models'' (P. Sunnerhagen and J. Piskur, eds.), Vol. l5, pp. l3l-l43. Springer-Verlag, Heidelberg.

Krantz, M., Nordlander, B., Valadi, H., Johansson, M., Gustafsson, L., and Hohmann, S. (2004). Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. Eukaryot. Cell 3, l38l-l390.

Luyten, K., Albertyn, J., Skibbe, W. F., Prior, B. A., Ramos, J., Thevelein, J. M., and Hohmann, S. (l995). Fpsl, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14, l360-l37l.

Maeda, T., Takekawa, M., and Saito, H. (l995). Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269, 554-558.

Maeda, T., Tsai, A. Y. M., and Saito, H. (l993). Mutations in a protein tyrosin phosphatase gene (PTP2) and a protein serine/threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 5408-54l7.

Maeda, T., Wurgler-Murphy, S. M., and Saito, H. (l994). A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369, 242-245.

Norbeck, J., Pahlman, A. K., Akhtar, N., Blomberg, A., and Adler, L. (l996). Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae: Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 271, l3875-l388l.

Oliveira, R., Lages, F., Silva-Graca, M., and Lucas, C. (2003). Fpslp channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: Artefacts and re-definitions. Biochim. Biophys. Acta 1613, 57—7l.

O'Rourke, S. M., and Herskowitz, I. (l998). The Hogl MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev. 12, 2874-2886.

O'Rourke, S. M., and Herskowitz, I. (2004). Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol. Biol. Cell 15, 532-542.

O'Rourke, S. M., Herskowitz, I., and O'Shea, E. K. (2002). Yeast go the whole HOG for the hyperosmotic response. Trends Genet. 18, 405-4l2.

Ota, I. M., and Varshavsky, A. (l993). A yeast protein similar to bacterial two-component regulators. Science 262, 566-569.

Pettersson, N., Filipsson, C., Becit, E., Brive, L., and Hohmann, S. (2005). Aquaporins in yeasts and filamentous fungi. Biol. Cell 97, 487-500.

Pokholok, D. K., Zeitlinger, J., Hannett, N. M., Reynolds, D. B., and Young, R. A. (2006). Activated signal transduction kinases frequently occupy target genes. Science 313, 533-536.

Posas, F., Chambers, J. R., Heyman, J. A., Hoeffler, J. P., de Nadal, E., and Arino, J. (2000). The transcriptional response of yeast to saline stress. J. Biol. Chem. 275, l7249-l7255.

Posas, F., and Saito, H. (l997). Osmotic activation of the HOG MAPK pathway via Stellp MAPKKK: Scaffold role of Pbs2p MAPKK. Science 276, l702-l705.

Posas, F., Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., Thai, T. C., and Saito, H. (l996). Yeast HOGl MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLNl-YPDl-SSKl ''two-component'' osmosensor. Cell 86, 865-875.

Proft, M., Gibbons, F. D., Copeland, M., Roth, F. P., and Struhl, K. (2005). Genomewide identification of Skol target promoters reveals a regulatory network that operates in response to osmotic stress in Saccharomyces cerevisiae. Eukaryot. Cell 4, l343-l352.

Proft, M., Mas, G., de Nadal, E., Vendrell, A., Noriega, N., Struhl, K., and Posas, F. (2006). The stress-activated Hogl kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol. Cell 23, 24l-250.

Proft, M., Pascual-Ahuir, A., de Nadal, E., Arino, J., Serrano, R., and Posas, F. (200l). Regulation of the Skol transcriptional repressor by the Hogl MAP kinase in response to osmotic stress. EMBOJ. 20, ll23-ll33.

Proft, M., and Struhl, K. (2002). Hogl kinase converts the Skol-Cyc8-Tupl repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol. Cell 9, l307-l3l7.

Proft, M., and Struhl, K. (2004). MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118, 35l-36l.

Raitt, D. C., Posas, F., and Saito, H. (2000). Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Shol-dependent activation of the Hogl MAPK pathway. EMBO J. 19, 4623-463l.

Reiser, V., Raitt, D. C., and Saito, H. (2003). Yeast osmosensor Slnl and plant cytokinin receptor Crel respond to changes in turgor pressure. J. Cell Biol. 161, l035-l040.

Reiser, V., Salah, S. M., and Ammerer, G. (2000). Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Shol and Cdc42. Nat. Cell Biol. 2, 620-627.

Rep, M., Krantz, M., Thevelein, J. M., and Hohmann, S. (2000). The transcriptional response of Saccharomyces cerevisiae to osmotic shock: Hotlp and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275, 8290-8300.

Rep, M., Proft, M., Remize, F., Tamas, M., Serrano, R., Thevelein, J. M., and Hohmann, S. (2001). The Saccharomyces cerevisiae Skolp transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol. Microbiol. 40, 1067—1083.

Rep, M., Reiser, V., HolzmUller, U., Thevelein, J. M., Hohmann, S., Ammerer, G., and Ruis, H. (1999). Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol. Cell. Biol. 19, 5474—5485.

Ruis, H., and Schüller, C. (1995). Stress signaling in yeast. Bioessays 17, 959—965.

Saito, H., and Tatebayashi, K. (2004). Regulation of the osmoregulatory HOG MAPK cascade in yeast. J. Biochem. (Tokyo) 136, 267—272.

Sato, N., Kawahara, H., Toh-e, A., and Maeda, T. (2003). Phosphorelay-regulated degradation of the yeast Ssk1p response regulator by the ubiquitin-proteasome system. Mol. Cell. Biol. 23, 6662-6671.

Siderius, M., Van Wuytswinkel, O., Reijenga, K. A., Kelders, M., and Mager, W. H. (2000). The control of intracellular glycerol in Saccharomyces cerevisiae influences osmotic stress response and resistance to increased temperature. Mol. Microbiol. 36, 1381-1390.

Tamas, M. J., Karlgren, S., Bill, R. M., Hedfalk, K., AHegri, L., Ferreira, M., Thevelein, J. M., Rydstrom, J., Mullins, J. G., and Hohmann, S. (2003). A short regulatory domain restricts glycerol transport through yeast Fps1p. J. Biol. Chem. 278, 6337-6345.

Tamas, M. J., Luyten, K., Sutherland, F. C. W., Hernandez, A., Albertyn, J., Valadi, H., Li, H., Prior, B. A., Kilian, S. G., Ramos, J., Gustafsson, L., Thevelein, J. M., and Hohmann, S. (1999). Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol. Microbiol. 31, 1087-1104.

Tao, W., Deschenes, R. J., and Fassler, J. S. (1999). Intracellular glycerol levels modulate the activity of Sln1p, a Saccharomyces cerevisiae two-component regulator. J. Biol. Chem. 274, 360-367.

Tatebayashi, K., Yamamoto, K., Tanaka, K., Tomida, T., Maruoka, T., Kasukawa, E., and Saito, H. (2006). Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBOJ. 25, 3033-3044.

Teige, M., Scheikl, E., Reiser, V., Ruis, H., and Ammerer, G. (2001). Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc. Natl. Acad. Sci. USA 98, 5625-5630.

Thorsen, M., Di, Y., Tangemo, C., Morillas, M., Ahmadpour, D., Van der Does, C., Wagner, A., Johansson, E., Boman,J., Posas, F., Wysocki, R., and Tamas, M.J. (2006). The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol. Biol. Cell. 17, 4400-4410.

Van Wuytswinkel, O., Reiser, V., Siderius, M., Kelders, M. C., Ammerer, G., Ruis, H., and Mager, W. H. (2000). Response of Saccharomyces cerevisiae to severe osmotic stress: Evidence for a novel activation mechanism of the HOG MAP kinase pathway. Mol. Microbiol. 37, 382-397.

Warringer, J., Ericson, E., Fernandez, L., Nerman, O., and Blomberg, A. (2003). Highresolution yeast phenomics resolves different physiological features in the saline response. Proc. Natl. Acad. Sci. USA 100, 15724-15729.

Yale, J., and Bohnert, H. J. (2001). Transcript expression in Saccharomyces cerevisiae at high salinity. J. Biol. Chem. 276, 15996-16007.

Was this article helpful?

0 0

Post a comment