Dynamics of the Vertebrate Nuclear Envelope

Malini Mansharamani, Katherine L. Wilson and James M. Holaska Abstract

The cell nucleus is a complicated organelle that houses the genome of humans and other eukaryotic organisms. Chromosomes are enclosed by the nuclear envelope, and 'communicate' with the cytoplasm by the regulated movement of molecules across nuclear pore complexes. In multicellular animal eukaryotes ('metazoans'), a special set of nuclear membrane proteins and lamin filaments interact with chromatin to provide key structural and functional elements to the nucleus. Remarkably, these structures are reversibly disassembled during mitosis. This Chapter describes the structure and major constituent proteins of the metazoan nuclear envelope, our current understanding of nuclear envelope dynamics during mitosis, and pathways for the reversible breakdown and reassembly of the nuclear envelope and nuclear infrastructure. This field is moving quite fast. A better understanding of these fundamental aspects of nuclear envelope structure and dynamics will provide new insights into an emerging class of inherited human diseases, including Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, and lipodystrophy. Further work in this field may also suggest novel anti-viral therapies for HIV or herpesvirus, which specifically disrupt nuclear envelope structure during their life cycles.

Was this article helpful?

0 0

Post a comment