References

1. Tomlinson MG, Lin J, Weiss A. Lymphocytes with a complex: adapter proteins in antigen receptor signaling. Immunol Today 2000;21:584-91.

2. Billadeau DD, Leibson PJ. ITAMs versus ITIMs: striking a balance during cell regulation. J Clin Invest 2002; 109:161 -8.

3. Reth M. Antigen receptor tail clue. Nature 1989;338:383-4.

4. Cambier JC. New nomenclature for the Reth motif (or ARH1 /TAM/ARAM/YXXL). Immunol Today 1995; 16:110.

5. Weiss A. T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 1993;73:209-12.

6. Anderson P, Caligiuri M, Ritz J, Schlossman SF. CD3-negative natural killer cells express Ç TCR as part of a novel molecular complex. Nature 1989;341:159-62.

7. Lanier LL, Yu G, Phillips JH. Co-association of CD3Ç with a receptor (CD16) for IgG Fc on human natural killer cells. Nature 1989;342:803-5.

8. Orloff DG, Ra C, Frank SJ, Klausner RD, Kinet J-R Family of disulphide-linked dimers containing the £ and T| chains of the T cells receptor and the y chain of Fc receptors. Nature 1990;347:189-91.

9. Kurosaki T, Gander I, Ravetch JV. A subunit common to an IgG Fc receptor and the T-cell receptor mediates assembly through different interactions. Proc Natl Acad Sci USA 1991;88:3837-41.

10. Vivier E, da Silva AJ, Ackerly M, Levine H, Rudd CE, Andersson P. Association of a 70-kDa tyrosine phosphoprotein with the CD 16:C: y complex expressed in human natural killer cells. Eur J Immunol 1993;23:1872-76.

11. Stahls A, Liwszyc GE, Couture C, Mustelin T, Anderson LC. Triggering of human natural killer cells through CD 16 induces tyrosine phosphorylation of the p72syk kinase. Eur J Immunol 1994;24:2491-6.

12. Azzoni L, Kamoun M, Salcedo TW, Kanakaraj P, Perussia B. Stimulation of FcyRIIIA results in phospholipase C-yl tyrosine phosphorylation and p56lclt activation. J Exp Med 1992;176:1745-50.

13. Ting AT, Karnitz LM, Schoon RA, Abraham RT, Leibson PJ. Fey receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-yl and PLC-y2 in natural killer cells. J Exp Med 1992; 176:1751-5.

14. Kanakaraj P, Duckworth B, Azzoni L, Kamoun M, Cantley LC, Perussia B. Phosphatidylinositol-3 kinase activation induced upon FcyRIIIA-ligand interaction. J Exp Med 1994;179:551-8.

15. Bonnema JD, Karnitz LM, Schoon RA, Abraham RT, Leibson PJ. Fc receptor stimulation of phosphatidylinositol 3-kinase in natural killer cells is associated with protein kinase C-independent granule release and cell-mediated cytotoxicity. J Exp Med 1994; 180: 1427-35.

16. Billadeau DD, Brumbraugh KM, Dick CJ, Schoon RA, Bustelo XR, Leibson PJ. The Vav-Racl pathway in cytotoxic lymphocytes regulates the generation of cell-mediated killing. J Exp Med 1998;188:549-59.

17. Billadeau DD, Mackie SM, Schoon RA, Leibson PJ. The Rho family guanine nucleotide exchange factor Vav-2 regulates the development of cell-mediated cytotoxicity. J Exp Med 2000;192:381-91.

18. Wei S, Gamero AM, Liu JH, Daulton AA, Valkov NI, Trapani JA, et al. Control of lytic function by mitogen-activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a human natural killer cell line: identification of perforin and granzyme B mobilization by functional ERK2. J Exp Med 1998;187:1753-65.

19. Yamada H, Kishihara K, Kong Y-Y, Nomoto K. Enhanced generation of NK cells with intact cytotoxic function in CD45 exon 6-deficient mice. J Immunol 1996; 157:1523-8.

20. van Oers NSC, Lowin-Kropf B, Finlay D, Connolly K, Weiss A. ap T cell development is abolished in mice lacking both Lck and Fyn protein tyrosine kinases. Immunity 1996;5: 429-36.

21. Pessino A, Sivori S, BottinoC, Malaspina A, MorelliL, MorettaL, et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med 1998;188:953-60.

22. Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, et al. Identification and molecular characterization of NKp30, a novel triggering receptor in natural cytotoxicity mediated by human natural killer cells. J Exp Med 1999; 190:1505-16.

23. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 2001;409:1055-60.

Vankayalapati R, Wizel B, Weis SE, Safi H, Lakey DL, Mandelboim O, et al. The NKp46 receptor contributes to NK cell lysis of mononuclear phagocytes infected with an intracelullar bacterium. J Immunol 2002;168:3451-7.

Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 1997;186:1129-36.

Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 1998;187:2065-72.

Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O. Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 2001 ;31:2680-9. Cantoni C, Bottino C, Vitale M, Pessino A, Augugliaro R, Malaspina A, et al. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J Exp Med 1999;189:787-95. Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 1998;391: 703-7.

Brown MH, Boles K, van der Merwe PA, Kumar V, Mathew PA, Barclay AN. 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48. J Exp Med 1998; 188:2083-90.

Latchman Y, McKay PF, Reiser H. Identification of the 2B4 molecule as a counter-receptor for CD48. J Immunol 1998; 161:5809-l 2.

Garni-Wagner BA, Purohit A, Mathew PA, Bennett M, Kumar V. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells. J Immunol 1993; 151:60-70.

Tangye SG, Lazetic S, Woollatt E, Sutherland GR, Lanier LL, Phillips JH. Human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J Immunol 1999;162:6981-5.

Aoukaty A, Tan R. Association of the X-linked lymphoproliferative disease gene product SAP/SH2D1A with 2B4, a natural killer cell-activating molecule, is dependent on phohphoinesitide 3-kinase. J Biol Chem 2002;277;13331-13337.

Bottino C, Augugliaro R, Castriconi R, Nanni M, Biassoni R, Moretta L, et al. Analysis of the molecular mechanism involved in 2B4-mediated NK cell activation: evidence that human 2B4 is physically and functionally associated with the linker for activation of T cells. Eur J Immunol 2000;30:3718-22.

Nakajima H, Cella M, Langen H, Friedlein A, Colonna M. Activating interactions in human NK cell recognition: the role of 2B4-CD48. Eur J Immunol 1999;29:1676-83. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999;285:727-9. Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK, et al. Interactions of human NKG2D with its ligands MICA, MICB and homologs of the mouse RAE-1 protein family. Immunogenetics 2001;53:279-87.

Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK

cytotoxicity through the NKG2D receptor. Immunity 2001;14:123-33.

40. Cerwenka A, Bakker AB, McClanahan T, Wagner J, Wu J, Phillips JH, et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 2000;12:721-7.

41. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 2000; 1:119-26.

42. Carayannopoulos LN, Naidenko OV, Fremont DH, Yokoyama WM. Murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol 2002;169:4079-83.

43. Kubin M, Cassiano L, Chalupny J, Chin W, Cosman D, Fanslow W, et al. ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells. Eur JImmunol 2001;31:1428-37.

44. Wu J, Song Y, Bakker ABH, Bauer S, Spies T, Lanier LL, et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 1999;285:730-2.

45. Wu J, Cherwinski H, Spies T, Phillips JH, Lanier LL. DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells. J Exp Med 2000; 192: 1059-67.

46. Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, Vivier E, et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 2002;3:1142-9.

47. Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol 2002;3:1150-5.

48. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct recognition of cytomeglovirus by activating and inhibitory NK cell receptors. Science 2002;296:1323-6.

49. Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 1998;92:83-92.

50. Jevremovic D, Billadeau DD, Schoon RA, Dick CJ, Irvin BJ, Zhang W, et al. A role for the adaptor protein LAT in human NK cell-mediated cytotoxicity. J Immunol 1999; 162: 2453-6.

51. Zhang W, Sommers CL, Burshtyn DN, Stebbins CC, DeJarnette JB, Trible RP, et al. Essential role of LAT in T cell development. Immunity 1999;10:323-32.

52. Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Ann Rev Immunol 2002;20:55-72.

53. Chini CCS, Boos MD, Dick CJ, Schoon RA, Leibson PJ. Regulation of p38 mitogen-activated protein kinase during NK cell activation. Eur J Immunol 2000;30:2791-8.

54. Jiang K, Zhong B, Gilvary DL, Corliss BC, Hong-Geller E, Wei S, et al. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat Immunol 2000;1:419-25.

55. Jiang K, Zhong B, Gilvary DL, Corliss BC, Vivier E, Hong-Geller E, et al. Syk regulation of phophoinositide 3-kinase-dependent NK cell function. J Immunol 2002;168:3155-64.

56. Wei S, Gilvary DL, Corliss BC, Sebti S, Sun J, Straus DB, et al. Direct tumor lysis by NK cells uses a Ras-independent mitogen-activated protein kinase signal pathway. J Immunol 2000;165:3811-9.

57. Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 1999;274:8347-50.

Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J 2000;348:241-55.

Ridley AJ. Rho family proteins: coordinating cell responses. Trends Cell Biol 2001; 11: 471-7.

Lou Z, Billadeau DD, Savoy DN, Schoon RA, Leibson PJ. A role for RhoA/ROCK/LIM-kinase pathway in the regulation of cytotoxic lymphocytes. J Immunol 2001; 167:574957.

Ravetch JV, Lanier LL. Immune inhibitory receptors. Science 2000;280:84-9.

Vivier E, Daeron M. Immunoreceptor tyrosine-based inhibition motifs. Immunol Today

1997;18:286-91.

Burshtyn DN, Scharenberg AM, Wagtmann N, Rajagopalan S, Berrada K, Yi T, et al. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitory receptor. Immunity 1996;4:77-85.

Binstadt BA, Brumbaugh KM, Dick CJ, Scharenberg AM, Williams BL, Colonna M, et al. Sequential involvement of Lck and SHP-1 with MHC recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity 1996;5:629-38. Yusa S, Catina TL, Campbell KS. SHP-1- and phosphotyrosine-independent inhibitory signaling by a killer cell Ig-like receptor cytoplasmic domain in human NK cells. J Immunol 2002; 168:5047-57.

Uhrberg M, Valiante NM, Shum BP, Schilling HG, Lienert-Weidenbach K, Corliss B, et al. Human diversity in killer cell inhibitory receptor genes. Immunity 1997;7:753-63. Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 2002;20:217-51.

Karlhofer FM, Ribaudo RK, Yokoyama WM. MHC class I alloantigen specificity of Ly-

49+IL-2 activated natural killer cells. Nature 1992;358: 66-70.

Lanier LL. NK cell receptors. Ann Rev Immunol 1998;16:359-93.

Phillips JH, Chang C, Mattson J, Gumperz JE, Parham P, Lanier LL. CD94 and a novel associated protein (94AP) form a NK cell receptor involved in the recognition of HLA-A,

HLA-B, and HLA-C allotypes. Immunity 1996;5:163-72.

Braud VM, Allan DS, O'Callaghan CA, Soderstrom K, D'Andrea A, Ogg GS, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 1998;391:795-9. Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG. Recognition of human histocompatibility antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2A confers protection from natural killer cell-mediated lysis. J Exp Med 1998;187:813-8.

Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M, et al. HLA-E is a major ligand for the natural killer cell inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA 1998;95:5199-209.

Kurepa Z, Hasemann CA, Forman J. Qa-lb binds conserved class I leader peptides derived from several mammalian species. J Exp Med 1998;188:973-8.

Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1b. J Exp Med 1998; 188:1841 -8.

Michaelsson J, de Matos CT, Achour A, Lanier LL, Karre K, Soderstrom K. A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 2002;196:1403-14.

Davis DM, Chui I, Fassett M, Cohen GB, Mandelboim O, Strominger JL. The human natural killer cell immune synapse. PNAS 1999;96:15062-7.

78. Lou Z, Jevremovic D, Billadeau DD, Leibson PJ. A balance between positive and negative signals in cytotoxic lymphocytes regulates the polarization of lipid rafts during the development of cell-mediated killing. J Exp Med 2000; 191:347-54.

79. Fassett MS, Davis DM, Valter MM, Cohen GB, Strominger JL. Signaling at the inhibitory natural killer cell immune synapse regulates lipid raft polarization but not MHC class I clustering. PNAS 2001;98:14547-52.

80. Galandrini G, Tassi I, Mattia G, Lenti L, Piccoli M, Frati L, et al. SH2-containing inositol phosphatase (SHIP-1) transiently translocates to raft domains and modulates CD 16-mediated cytotoxicity in human NK cells. Blood 2002; 100:4581-9.

81. Eischen CM, Schilling JD, Lynch DH, Krammer PH, Leibson PJ. Fc receptor-induced expression of Fas ligand on activated NK cells facilitates cell-mediated cytotoxicity and subsequent autocrine NK cell apoptosis. J Immunol 1996;156:2693-9.

82. Eischen CM, Leibson PJ. The Fas pathway in apoptosis. Adv Pharmacol 1997;41:107-32.

83. Spaggiari GM, Contini P, Dondero A, Carosio R, Puppo F, Indiveri F, et al. Soluble HLA class I induces NK cell apoptosis upon the engagement of killer-activating HLA class I receptors through FasL-Fas interaction. Blood 2002;100:4098-107.

84. Ross ME, Caligiuri MA. Cytokine-induced apoptosis of human natural killer cells identifies a novel mechanism to regulate the innate immune response. Blood 1997;89: 910-8.

Natural Immunity

Edited by L. Bertök and D.A. Chow © 2005 Elsevier B.V. All rights reserved

Natural Treatments For Psoriasis

Natural Treatments For Psoriasis

Do You Suffer From the Itching and Scaling of Psoriasis? Or the Chronic Agony of Psoriatic Arthritis? If so you are not ALONE! A whopping three percent of the world’s populations suffer from either condition! An incredible 56 million working hours are lost every year by psoriasis sufferers according to the National Psoriasis Foundation.

Get My Free Ebook


Post a comment