References

Al-Alousi, L.M., Anderson, R.A., Worster, D.M. and Land, D.V. (2001) Multiple-probe thermography for estimating the postmortem interval: I. Continuous monitoring and data analysis of brain, liver, rectal and environmental temperatures in 117 forensic cases. J. Forensic Sci. 46: 317-322.

Althaus, L. and Henssge, C. (1999) Rectal temperature time of death nomogram: sudden change of ambient temperature. Forensic Sci. Int. 99: 171-178.

Banaschak, S., Rzanny, R., Reichenbach, J.R., Kaiser, W.A. and Klein, A. (2005) Estimation of postmortem metabolic changes in porcine brain tissue using 1H-MR spectroscopy - preliminary results. Int. J. Legal Med. 119: 77-79.

Benecke, M. (1996) [Expert insect identification in cases of decomposed bodies]. Arch. Kriminol. 198: 99-109.

Berg, S. (1975) Leichenzersetzung und Leichenzerstörung. In: Gerichtliche Medizin (B. Mueller, ed.), Springer Verlag, Berlin, pp. 62-106.

Boesch, C. (1999) Molecular aspects of magnetic resonance imaging and spectroscopy. Mol. Aspects Med. 20: 185-318.

Boesch, C. (2005) Magnetic resonance spectroscopy: basic principles. In: Clinical Magnetic Resonance Imaging (R.R. Edelman, J.R. Hesselink, M.B. Zlatkin and J.V. Cruess, eds), Saunders/Elsevier, Philadelphia, PA, pp. 459-492.

Bonte, W. (1978) Der postmortale Proteinkatabolismus. Experimentelle Untersuchungen zum Problem der forensischen Leichenzeitbestimmung. Habil. Schrift, Göttingen, pp. 57-75.

Bonte, W., Pohlig, K., Sprung, R. and Bleifuss, J. (1976) [The effect of microorganisms on protein catabolism in putrefaction studies]. Beitr. Gerichtl. Med. 34: 173-178.

Brand, J.M. and Galask, R.P. (1986) Trimethylamine: the substance mainly responsible for the fishy odor often associated with bacterial vaginosis. Obstet. Gynecol. 68: 682-685.

Campobasso, C.P., Di Vella, G. and Introna, F. (2001) Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 120: 18-27.

Capron, A.M. (2001) Brain death - well settled yet still unresolved. N. Engl. J. Med. 344:1244-1246.

Chang, L., Ernst, T., Poland, R.E. and Jenden, D.J. (1996) In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci. 58: 2049-2056.

Coe, J.I. (1974) Postmortem chemistries on blood with particular reference to urea nitrogen, electrolytes, and bilirubin. J. Forensic Sci. 19: 33-42.

Coe, J.I. (1989) Vitreous potassium as a measure of the postmortem interval: an historical review and critical evaluation. Forensic Sci. Int. 42: 201-213.

Daldrup, T. (1983) [Practical experiences with the determination of cadaver age by evaluation of bacterial metabolic products]. Z. Rechtsmed. 90: 19-25.

Daldrup, T. (1984) Die Aminosäuren des Leichengehirns, Enke Verlag Stuttgart, Stuttgart.

Daldrup, T., Hagedorn, H.J. and Korfers, M. (1982) [Microbiologic studies of fresh and putrefied cadaver brains]. Beitr. Gerichtl. Med. 40: 379-382.

De Graaf, R.A. (1999) In vivo NMR spectroscopy: Principles and Techniques, John Wiley & Sons, Chichester, UK.

Diessner, H. and Lahl, R. (1969) [The post mortem determination of hydrogen-ion concentration in brain tissue homogenate and its relation to cause of death, course of death and time of death in selected autopsy material]. Zentralbl. Allg. Pathol. 112: 162-170.

Doring, G. (1975) [Postmortem lipid metabolism]. Beitr. Gerichtl. Med. 33: 76-84.

Endo, T., Hara, S., Kuriiwa, F. and Kano, S. (1990) Postmortem changes in the levels of monoamine metabolites in human cerebrospinal fluid. Forensic Sci. Int. 44: 61-68.

Fechner, G., Koops, E. and Henssge, C. (1984) [Cessation of livor in defined pressure conditions]. Z. Rechtsmed. 93: 283-287.

Forster, B., Ropohl, D., Prokop, O. and Riemer, K. (1974) Tierexperimente und an menschlichen Leichen gewonnene Daten zur Frage der Totenstarre. Krim. Forens. Wissen. 13: 35-45.

Friedrich, G. (1986) Forensische postmortale Biochemie. In: Praxis der Rechtsmedizin für Juristen und Mediziner (B. Forster, ed.), Springer Verlag, Berlin, pp. 789-831.

Gadian, D.G. (1982) Nuclear Magnetic Resonance and its Applications to Living Systems, Clarendon Press, Oxford.

Glover, G.H. and Herfkens, R.J. (1998) The International Society for Magnetic Resonance in Medicine. Research directions in MR imaging. Radiology 207: 289-295.

Grassberger, M. and Reiter, C. (2001) Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomeg. Forensic Sci. Int. 120: 32-36.

Henssge, C. (2002) Todeszeitbestimmung an Leichen. Rechtsmedizin 112: 112-131.

Henssge, C., Althaus, L., Bolt, J., Freislederer, A., Haffner, H.T., Henssge, C., Hoppe, B. and Schneider, V. (2000a) Experiences with a compound method for estimating the time since death. I. Rectal temperature nomogram for time since death. Int. J. Legal Med. 113: 303-319.

Henssge, C., Althaus, L., Bolt, J., Freislederer, A., Haffner, H.T., Henssge, C., Hoppe, B. and Schneider, V. (2000b) Experiences with a compound method for estimating the time since death. II. Integration of non-temperature-based methods. Int. J. Legal Med. 113: 320-331.

Henssge, C. and Madea, B. (1988) Methoden zur Bestimmung der Todeszeit an Leichen, Schmidt-Römhild Verlag, Lübeck.

Howe, F., Maxwell, R., Saunders, D., Brown, M. and Griffiths, J. (1993) Proton spectroscopy in vivo. Magnetic Resonance Quarterly 9: 31-59.

Ith, M., Bigler, P., Scheurer, E., Kreis, R., Hofmann, L., Dirnhofer, R. and Boesch, C. (2002) Observation and identification of metabolites emerging during postmortem decomposition of brain tissue by means of in situ 1H-magnetic resonance spectroscopy. Magn. Reson. Med. 48: 915-920.

Ith, M., Kreis, R., Scheurer, E., Dirnhofer, R. and Boesch, C. (2001) Using 1H-MR Spectroscopy in Forensic Medicine to Estimate the Post-Mortem Interval: A Pilot Study in an Animal Model and its Application to Human Brain. Proc. Int. Soc. Magn. Reson. Med. 9: 388.

Kim, S.H., Chang, K.H., Song, I.C., Han, M.H., Kim, H.C., Kang, H.S. and Han, M.C. (1997) Brain abscess and brain tumor: discrimination with in vivo H-1 MR spectroscopy. Radiology 204: 239-245.

Kreis, R. (1997) Quantitative localized 1H MR spectroscopy for clinical use. Prog. NMR Spectrosc. 31: 155-195.

Krompecher, T., Bergerioux, C., Brandt-Casadevall, C. and Gujer, H.R. (1983) Experimental evaluation of rigor mortis. VI. Effect of various causes of death on the evolution of rigor mortis. Forensic Sci. Int. 22: 1-9.

Krompecher, T. and Fryc, O. (1979) [Determination of the time of death based on rigor mortis]. Beitr. Gerichtl. Med. 37: 285-289.

Kurthen, M., Linke, D.B. and Reuter, B.M. (1989) [Brain death, death of the cerebral cortex or personal death? On the current discussion of brain-oriented determination of death]. Med. Klin. 84: 483-487.

Lindlar, F. (1969) [Postmortem lipid changes and time of death determination]. Beitr. Gerichtl. Med. 26: 71-73.

Madea, B. and Henssge, C. (1991) Supravitalität. Rechtsmedizin 1: 117-129.

Madea, B., Kreuser, C. and Banaschak, S. (2001) Postmortem biochemical examination of synovial fluid-a preliminary study. Forensic Sci. Int. 118: 29-35.

Mallach, H.J. and Mittmeyer, H.J. (1971) [Rigor mortis and livores. Estimation of time of death by use of computerized data processing]. Z. Rechtsmed. 69: 70-78.

Mann, R.W., Bass, W.M. and Meadows, L. (1990) Time since death and decomposition of the human body: variables and observations in case and experimental field studies. J. Forensic Sci. 35: 103-111.

Marshall, T.K. and Hoare, F.D. (1962) Estimating the time of death: The rectal cooling after death and its mathematical expression. J. Forensic Sci. 7: 56-81.

Marty, W. (1995) Thermographie und Thermometrie in der Forensik mit besonderer Berücksichtigung der Todeszeitbestimmung, Habil. Schrift, Zürich.

Mayer, M. and Neufeld, B. (1980) Post-mortem changes in skeletal muscle protease and creatine phosphokinase activity - a possible marker for determination of time of death. Forensic Sci. Int. 15: 197-203.

Mittmeyer, H.J. (1980) [Muscle electrophoretic study in the determination of the time of death]. Beitr. Genchtl. Med. 38: 177-185.

Plattner, T., Scheurer, E. and Zollinger, U. (2002) The response of relatives to medicolegal investigations and forensic autopsy. Am. J. Forensic Med. Pathol. 23: 345348.

Provencher, S.W. (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30: 672-679.

Ross, B.D. and Danielsen, E.R. (1999) Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases, Marcel Dekker, New York.

Sabatier, J., Tremoulet, M., Ranjeva, J.P., Manelfe, C., Berry, I., Gilard, V. and Malet-Matino, M. (1999) Contribution of in vivo 1H spectroscopy to the diagnosis of deep-seated brain abscess. J. Neurol. Neurosurg. Psychiatry 66: 120-121.

Scheurer, E., Ith, M., Dietrich, D., Kreis, R., Huesler, J., Dirnhofer, R. and Boesch, C. (2003) Statistical evaluation of 1H-MR spectra of the brain in situ for quantitative determination of postmortem intervals (PMI). Proc. Int. Soc. Magn. Reson. Med. 11: 569.

Scheurer, E., Ith, M., Dietrich, D., Kreis, R., Husler, J., Dirnhofer, R. and Boesch, C. (2005) Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain. NMR Biomed. 18: 163-172.

Schleyer, F. (1975) Leichenveränderungen, Todeszeitbestimmung im früh-postmortalen Intervall. In: Gerichtliche Medizin, (B. Mueller, ed.), Springer Verlag, Berlin, pp. 55-62.

Schneider, V. and Riese, R. (1980) Fäulnisveränderungen an Leichen. Ein Beitrag zur Todeszeitbestimmung. Kriminalistik 34: 297-299.

Shapiro, H.A. (1965) The post-mortem temperature plateau. J. Forensic Med. 12: 137141.

Smith, K.G.V. (1986) A Manual of Forensic Entomology, British Museum, Natural History, London, and Cornell University Press, Ithaca, NY.

Thali, M.J., Yen, K., Schweitzer, W., Vock, P., Boesch, C., Ozdoba, C., Schroth, G., Ith, M., Sonnenschein, M., Doernhoefer, T., Scheurer, E., Plattner, T. and Dirnhofer, R. (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) - a feasibility study. J. Forensic Sci. 48: 386-403.

Wagner, H.J. (1967) [On the influencing of time of death determinations and decomposition processes by drugs]. Dtsch. Z. Ges. Gerichtl. Med. 59: 245-255.

Yen, K., Vock, P., Tiefenthaler, B., Ranner, G., Scheurer, E., Thali, M.J., Zwygart, K., Sonnenschein, M., Wiltgen, M. and Dirnhofer, R. (2004) Virtopsy: forensic traumatology of the subcutaneous fatty tissue; multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) as diagnostic tools. J. Forensic Sci. 49: 799-806.

Index affinity peptidomic assay 216 amelogenin (AMG) 56, 65, 67, 82, 104,

108,119,143,186 AmpFISTR Profile 82 ancestral allele 80 ancestry 5, 99, 141, 150, 153-6 ancient DNA 60, 65-7 anti-peptide antibodies 208, 214, 215 apyrase 31, 32 ATP sulphurylase 31 ATPsynthase 8, 65, 131 autolysis 223, 229, 234 autosomal polymorphic markers 5, 44, 61, 62, 82, 94, 112, 120, 145, 147,173, 185

barcode 50, 174 Bayes theorem 178, 194 BIAcore 202-4

bioinformatics 6, 10, 24, 98, 145, 148, 154, 174, 178, 188, 190; see also Combined DNA Index System (CODIS), National DNA Database (NDNAD), Y Chromosome Haplotype Reference Database (YHRD) biometric markers 197, 208, 209

Cambridge reference sequence 130 capillary electrophoresis 32, 75, 82, 169

ceiling principle 74, 193 Chelex-100 39, 40, 41, 168

contamination 23, 28, 37, 41, 47-50, 52-6, 97, 111, 165, 166, 176, 177, 188

Combined DNA Index System (CODIS) 24, 82, 83, 91, 95, 96, 100, 120, 186, 187, 189,190,191 criminal justice system (CJS) 1, 7, 12 Ct value, see quantitative PCR cytochrome b 66, 135, 136

decontamination 47, 54 diploid coding 78 DNA ALU 62, 64

amplification, see polymerase chain reaction (PCR) ancient 60, 65, 66 aatabase, see bioinformatics DNA extraction 23, 37, 39, 49, 40,

42, 44-6, 49, 50, 52 indexing system, see Combined DNA

Index System (CODIS) low copy number (LCN) 3, 6, 28, 59,

66, 146, 155 mitochondrial (mtDNA), see mitochondrial (mtDNA) mixed samples 4, 79, 97, 147, 163,

176, 186, 187, 194 PCR, see polymerase chain reaction sequencing 30-3, 130 DNA profiling 7, 44, 73, 187, 190, 192

DYSplex 145

Molecular Forensics. Edited by Ralph Rapley and David Whitehouse Copyright 2007 by John Wiley & Sons, Ltd.

Enzyme Linked Immunsorbent Assay (ELISA) 206

fluorescent labels 62, 75, 94, 199-201,

205, 215 fluorochromes 32 formaldehyde 204, 215 formalin 38

gene mapping 30, 34, 110, 114, 115 genRES 145 guanidinium 42, 45

haplotype analysis 5, 81, 86, 98, 99,

105,107,113-117, 132,144 Hardy-Weinberg Principle/Equilibrium

95, 107,190 heterolysis 229, 234 histological analysis 166 human telomerase reverse transcriptase (hTERT) locus 64

identical (monozygotic) twins 72, 192 immunoassay 198 immunochromatography 200 immunomagnetic separation 39 instrumentation, automated analysis 37 ABI Prism 6100 46 Autogen 49 Biomek 49, 51, 52 Bioneer HT 46 Chemagen 47 Corbet X Tractor 46 Centra Autopure 46 Promega Maxwell 47, 51 Qiagen EZ1 and M48 47, 53, 54 Roche MagNa Pure 47 Tecan Freedom EVO 48 ion-exchange chromatography 168

Klinefelter syndrome 104

lab on a chip 24 laboratory information system (LIS) 172

laser microdissection 163 LCR, ligase chain reaction 29 LCN, see DNA

linkage disequilibrium 111, 115, 119 liquid chromatograhy analysis 198 Lux probe, see probes luciferase 31

magattract 42, 47, 54, 56 magnetic (paramagnetic) beads 40, 42,

47, 50, 168 magnetic resonance imaging (MRI) 224,

226-7, 235 magnetic resonance spectroscopy (MRS) 221

mass spectrometry 24, 206

MALDI-ToF 206, 207 maternity testing 112, 114 Mentype Argus X 115 metabolites 198, 208, 223ff. microarrays 137, 197, 205-8, 215 microsatellite analysis 4, 71, 72, 80,

85,106-8, 119, 144 migration (human population) 5, 92,

119,121,154 minisatellite analysis 71ff., 105, 106, 149, 150 MVR 77-81, 86 missing persons database (MPD) 179-81

mitochondrial DNA (mtDNA), 63, 127, 131,187 C-stretch 134, 137, 187 heteroplasmy 129, 132, 134, 187 hypervariable region 1, 2 127, 133,

137,187 inheritance 129

multi-locus probe (MLP) 71-4, 91 multiplex PCR, see Polymerase Chain Reaction mutation 4, 5, 24, 29-32, 77, 79, 80, 85, 91-3, 96, 98, 106, 108, 115-17, 120, 129,132, 134, 143-6, 152-4, 202 MVR, see minisatellite analysis

NADH dehydrogenase assay 66 National DNA Database (NDNAD) 7, 24, 186, 191

nuclear magnetic resonance (NMR) 224-7, 229

paternity testing 112, 113, 116

deficiency test 117 peptidomics 206

polymerase chain reaction (PCR) 2, 22, 25, 27, 28, 38, 56, 59, 185 AFLP 74 ALU PCR 64 artifacts 59, 64 based typing 41, 59, 74 cycle sequencing 32 duplex 62, 64

inhibition 67 inhibitors 38, 64, 167, 168

multiplex 61, 84, 97, 173 nested 136 polymerase primer design 96 generunner 28 quantitative PCR, see quantitativePCR reverse transcriptase 28 singleplex 62 single stranded 94 Taq 26 27, 60 triplex 63 touchdown 25 polymorphism blood groups 21, 105 DNA 3-5, 21, 30, 34, 60, 64, 66, 72, 74, 92-7, 105, 112, 119, 127, 128, 130, 135, 141, 151, 171, 185

protein 21, 105 PowerPlex 52, 145 probes FAM 62 LUX probe 29 molecular beacons 64 scorpions 29 Taqman 29, 60, 62-6 VIC 63 protein array 197, 204 protein profiling 197

quality control 10, 23, 53, 145, 166, 172-174, 176, 180

quantitative PCR (Q-PCR) 29, 59, 67

Ct value 60 quartz crystal microbalance (QCM) 201

Qiagen extraction 55, 56

real time PCR, see quantitative PCR restriction fragment length polymorphism (RFLP) 72, 105

Was this article helpful?

0 0

Post a comment