1. Gardiner-Garden, M. and Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196:261-282, 1987.

2. Cooper, D. N. and Krawczak, M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum. Genet. 83: 181-188, 1989.

3. Krawczak, M., Ball, E. V., and Cooper, D. N. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am. J. Hum. Genet. 63:474-488, 1998.

4. Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321:209-213, 1986.

5. Nan, X., Ng, H. H., Johnson, C. A., et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386-389, 1998.

6. Jones, P. L., Veenstra, G. J., Wade, P. A., et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19:187-191, 1998.

7. Ballestar, E. and Wolffe, A. P. Methyl-CpG-binding proteins. Targeting specific gene repression. Eur. J. Biochem. 268:1-6, 2001.

8. Hendrich, B., Hardeland, U., Ng, H. H., Jiricny, J., and Bird, A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401:301-304, 1991.

9. Li, E., Bestor, T. H., and Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915-926, 1992.

10. Okano, M., Bell, D. W., Haber, D. A., and Li, E. DNA methyltrans-ferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247-257, 1991.

11. Dong, A., Yoder, J. A., Zhang, X., Zhou, L., Bestor, T. H., and Cheng, X. Structure of human DNMT2, an enigmatic DNA methyl-transferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res. 29:439-448, 2001.

12. Hata, K., Okano, M., Lei, H., and Li, E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983-1993, 2002.

13. Chedin, F., Lieber, M. R., and Hsieh, C. L. The DNA methyltrans-ferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc. Natl. Acad. Sci. USA 99:16,916-16,921, 2002.

14. Holliday, R. and Pugh, J. E. DNA modification mechanisms and gene activity during development. Science 187:226-232, 1975.

15. Riggs, A. D. X inactivation, differentiation and DNA methylation. Cytogenet. Cell. Genet. 14:9-25, 1975.

16. Razin, A. and Shemer, R. DNA methylation in early development. Hum. Mol. Genet. 4:1751-1755, 1995.

17. Behn-Krappa, A., Holker, I., Sandaradura de Silva, U., and Doerfler, W. Patterns of DNA methylation are indistinguishable in different individuals over a wide range of human DNA sequences. Genomics 11:1-7, 1991.

18. Robertson, K. D. and Wolffe, A. P. DNA methylation in health and disease. Nat. Rev. Genet. 1: 11-19, 2000.

19. Xu, G. L., Bestor, T. H., Bourc'his, D., et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187-191, 1999.

20. Hansen, R. S., Wijmenga, C., Luo, P., The DNMT3B DNA methyl-transferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA 96:14,412-14,417, 1999.

21. Fryns, J. P., Azou, M., Jaeken, J., Eggermont, E., Pedersen, J. C., and Van den Berghe, H. Centromeric instability of chromosomes 1, 9 and 16 associated with combined immunodeficiency. Hum. Genet. 57:108-110, 1981.

22. Haas, O. Centromeric heterochromatin instability of chromosomes 1, 9 and 16 in variable immunodeficiency syndrome—a virus-induced phenomenon? Hum. Genet. 85:244-246, 1990.

23. Ehrlich, M. DNA hypomethylation, cancer, the immunodeficiency, centromeric region instability, facial anomalies syndrome and chromosomal rearrangements. J. Nutr. 132:2424S-2429S, 2002.

24. Gibbons, R. J. and Higgs, D. R. Molecular-clinical spectrum of the ATR-X syndrome. Am. J. Med. Genet. 97:204-212, 2002.

25. Gibbons, R. J., McDowell, T. L., Raman, S., et al. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat. Genet. 24:368-371, 2000.

26. Shahbazian, M. D. and Zoghbi, H. Y. Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am. J. Hum. Genet. 71:1259-1272, 2002.

27. Oberle, I., Rousseau, F., Heitz, D., et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252:1097-1102, 1991.

28. Kremer, E. J., Pritchard, M., Lynch, M., et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252:1711-1714, 1991.

29. Gecz, J. The FMR2 gene, FRAXE and non-specific X-linked mental retardation: clinical and molecular aspects. Ann. Hum. Genet. 64:95-106, 2000.

30. Gecz, J. FMR3 is a novel gene associated with FRAXE CpG island and transcriptionally silent in FRAXE full mutations. J. Med. Genet. 37:782-784, 2000.

31. Jones, P. A. and Baylin, S. B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3:15-428, 2002.

32. Costello, J. F., Fruhwald, M. C., Smiraglia, D. J., et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet. 24:132-138, 2000.

33. Greger, V., Passarge, E., Hopping, W., Messmer, E., and Horsthemke, B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet. 83:155-158, 1989.

34. Sakai, T., Toguchida, J., Ohtani, N., Yandell, D. W., Rapaport, J. M., and Dryja, T. P. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am. J. Hum. Genet. 48:880-888, 1991.

35. Stirzaker, C., Millar, D. S., Paul, C. L., et al. Extensive DNA methy-lation spanning the Rb promoter in retinoblastoma tumors. Cancer Res. 57:2229-2237, 1997.

36. Herman, J. G., Latif, F., Weng, Y., et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA. 91:9700-9704, 1994.

37. Kane, M. F., Loda, M., Gaida, G. M., et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57:808-811, 1997.

38. Herman, J. G., Umar, A., Polyak, K., et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA 95:6870-6875, 1998.

39. Bianco, T., Chenevix-Trench, G., Walsh, D. C., Cooper, J. E. , and Dobrovic, A. Tumour-specific distribution of BRCA1 promoter region methylation supports a pathogenetic role in breast and ovarian cancer. Carcinogenesis 21:147-151, 2000.

40. Esteller, M., Silva, J. M., Dominguez, G., et al. Promoter hyperme-thylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl. Cancer Inst. 92:564-569, 2000.

41. Hedenfalk, I., Duggan, D., Chen, Y., et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344:539-548, 2001.

42. Collins, N., Wooster, R., and Stratton, M. R. Absence of methyla-tion of CpG dinucleotides within the promoter of the breast cancer susceptibility gene BRCA2 in normal tissues and in breast and ovarian cancers. Br. J. Cancer 76:1150-1156, 1997.

43. Yan, P. S., Chen, C. M., Shi, H., et al. Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res. 61:8375-8380, 2001.

44. Toyota, M., Ahuja, N., Ohe-Toyota, M., et al. CpG island methyla-tor phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA 96:8681-8686, 2001.

45. Santini, V., Kantarjian, H. M., and Issa, J. P. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann. Intern. Med. 134:573-586, 2001.

46. List, A. F. New approaches to the treatment of myelodysplasia. Oncologist 7( Suppl . 1):39-49, 2002.

47. Daskalakis, M., Nguyen, T. T., Nguyen, C., et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplas-tic syndrome by 5-Aza-2'-deoxycytidine (decitabine) treatment. Blood 100:2957-2964, 2002.

48. Leone, G., Teofili, L., Voso, M. T., and Lubbert, M. DNA methyla-tion and demethylating drugs in myelodysplastic syndromes and secondary leukemias. Haematologica 87:1324-1341, 2002.

49. Wang, R. Y., Gehrke, C. W., and Ehrlich, M. Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res. 8:4777-4790, 1980.

50. Frommer, M., Mcdonald, L. E., Millar, D. S., et al. A Genomic Sequencing Protocol That Yields a Positive Display of 5-Methylcytosine Residues in Individual DNA Strands. Proc. Natl. Acad.Sci. USA 89:1827-1831, 1992.

51. Clark, S. J., Harrison, J., Paul, C. L., and Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22:2990-2997, 1994.

52. Clark, S. J. and Frommer, M. F. Deamination with NaHSO3 in DNA methylation studies, in DNA and Nucleoprotein Structure InVivo, Saluz, H. and Wiebauer, K., eds., Biomedical Publishers. pp. 123-132, 1995.

53. Grunau, C., Clark, S. J., and Rosenthal, A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 29:E65,5, 2001.

54. Warnecke, P. M., Stirzaker, C., Song, J., Grunau, C., Melki, J. R., and Clark, S. J. Identification and resolution of artifacts in bisulfite sequencing. Methods. 27:101-107, 2002.

55. McDonald, L. E. and Kay, G. F. Methylation analysis using bisulfite genomic sequencing: application to small numbers of intact cells. Biotechniques 22:272-274, 1997.

56. Bian, Y. S., Yan, P., Osterheld, M. C., Fontolliet, C., and Benhattar, J. Promoter methylation analysis on microdissected paraffin-embedded tissues using bisulfite treatment and PCR-SSCP. Biotechniques 30:66-72, 2001.

57. Tan, L. W. and Dobrovic, A. Methylation analysis of formalin-fixed, paraffin-embedded sections using a nontoxic DNA extraction protocol. Biotechniques 31:1354, 1356-1357, 2001.

58. Millar, D. S., Warnecke, P. M., Melki, J. R., and Clark, S. J. Methylation sequencing from limiting DNA: embryonic, fixed and microdissected cells. Methods 27:108-113, 2002.

59. Paul, C. L. and Clark, S. J. Cytosine methylation: quantitation by automated genomic sequencing and GENESCAN analysis. Biotechniques 21:126-133, 1996.

60. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93:9821-9826, 1996.

61. Wu, D. Y., Ugozzoli, L., Pal, B. K., and Wallace, R. B. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc. Natl. Acad. Sci. USA 86:2757-2760, 1989.

62. Newton, C. R., Graham, A., Heptinstall, L. E., et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17:2503-2516, 1989.

63. Sarkar, G., Cassady, J., Bottema, C., and Sommer, S. S. Characterization of polymerase chain reaction amplification of specific alleles. Anal. Biochem. 186:64-68, 1998.

64. Dodge, J. E., List, A. F., and Futscher, B. W. Selective variegated methylation of the p15 CpG island in acute myeloid leukemia. Int. J. Cancer 78:561-567, 1998.

65. Tan, L. W., Bianco, T., and Dobrovic, A. Variable promoter region CpG island methylation of the putative tumor suppressor gene Connexin 26 in breast cancer. Carcinogenesis 23:231-236, 2002.

66. Aggerholm, A. and Hokland, P. DAP-kinase CpG island methylation in acute myeloid leukemia: methodology versus biology? Blood 95:2997-2999, 2000.

67. Aggerholm, A., Guldberg, P., Hokland, M., and Hokland, P. Extensive intra- and interindividual heterogeneity of p15INK4B methylation in acute myeloid leukemia. Cancer Res. 59:436-441, 1999.

68. Xiong, Z. and Laird, P. W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25:2532-2534, 1997.

69. Eads, C. A. and Laird, P. W. Combined bisulfite restriction analysis (COBRA). Methods Mol. Biol. 200:71-85, 2002.

70. Sadri, R. and Hornsby, P. J. Rapid analysis of DNA methylation using new restriction enzyme sites created by bisulfite modification. Nucleic Acids Res. 24:5058-5059, 1996.

71. Uejima, H., Lee, M. P., Cui, H., and Feinberg, A. P. Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios. Nat. Genet. 25:375-376, 2000.

72. Kuppuswamy, M. N., Hoffmann, J. W., Kasper, C. K., Spitzer, S. G., Groce, S. L., and Bajaj, S. P. Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proc. Natl. Acad. Sci. USA 88:1143-1147, 1991.

73. Gonzalgo, M. L. and Jones, P. A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 25:2529-2531, 1997.

74. Gonzalgo, M. L. and Jones, P. A. Quantitative methylation analysis using methylation-sensitive single-nucleotide primer extension (Ms-SNuPE). Methods 27:128-133, 2002.

75. El-Maarri, O., Herbiniaux, U., Walter, J., and Oldenburg, J. A rapid, quantitative, non-radioactive bisulfite-SNuPE- IP RP HPLC assay for methylation analysis at specific CpG sites. Nucleic Acids Res. 30:e25, 2002.

76. Galm, O., Rountree, M. R., Bachman, K. E., Jair, K. W., Baylin, S. B., and Herman, J. G. Enzymatic regional methylation assay: a novel method to quantify regional CpG methylation density. Genome Res. 12:153-157, 2002.

77. Cameron, E. E., Baylin, S. B., and Herman, J. G. p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood 94:2445-2451, 1999.

78. Burri, N. and Chaubert, P. Complex methylation patterns analyzed by single-strand conformation polymorphism. Biotechniques 26:232-234, 1999.

79. Bianco, T., Hussey, D., and Dobrovic, A. Methylation-sensitive, single-strand conformation analysis (MS-SSCA): A rapid method to screen for and analyze methylation. Hum. Mutat. 14:289-293, 1999.

80. Maekawa, M., Sugano, K., Ushiama, M., et al. Heterogeneity of DNA methylation status analyzed by bisulfite-PCR-SSCP and correlation with clinico-pathological characteristics in colorectal cancer. Clin. Chem. Lab. Med. 39:121-128, 2001.

81. Dobrovic, A., Bianco, T., Tan, L. W., Sanders, T., and Hussey, D. Screening for and analysis of methylation differences using methy-lation-sensitive single-strand conformation analysis. Methods 27:134-138, 2002.

82. Liu, Q., Feng, J., Buzin, C., et al. Detection of virtually all muta-tions-SSCP (DOVAM-S): a rapid method for mutation scanning with virtually 100% sensitivity. Biotechniques 26:932, 936-938, 940-942, 1999.

83. Guldberg, P., Worm, J., and Gronbaek, K. Profiling DNA methyla-tion by melting analysis. Methods 27:121-127,2002.

84. Worm, J., Aggerholm, A., and Guldberg, P. In-tube DNA methyla-tion profiling by fluorescence melting curve analysis. Clin. Chem. 47:1183-1189,2001.

85. Baumer, A., Wiedemann, U., Hergersberg, M., and Schinzel, A. A novel MSP/DHPLC method for the investigation of the methylation status of imprinted genes enables the molecular detection of low cell mosaicisms. Hum. Mutat. 17:423-430, 2001.

86. Deng, D. J., Zhou, J., Zhu, B. D., Ji, J. F., Harper, J. C., and Powell, S. M. Silencing-specific methylation and single nucleotide polymorphism of hMLH1 promoter in gastric carcinomas. World J. Gastroenterol. 9:26-29, 2003.

87. Eads, C. A., Danenberg, K. D., Kawakami, K., et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 28:E32, 2000.

88. Trinh, B. N., Long, T. I., and Laird, P.,W. DNA methylation analysis by MethyLight technology. Methods 25:456-462, 2001.

89. Rand, K., Qu, W., Ho, T., Clark, S. J., and Molloy, P. Conversion-specific detection of DNA methylation using real-time polymerase chain reaction (ConLight-MSP) to avoid false positives. Methods 27:114-120, 2002.

90. Rush, L. J. and Plass, C. Restriction landmark genomic scanning for DNA methylation in cancer: past, present and future applications. Anal. Biochem. 307:191-201, 2002.

91. Costello, J. F., Plass, C., and Cavenee, W. K. Restriction landmark genome scanning. Methods Mol. Biol. 200:53-70, (2002).

92. Huang, T. H., Perry, M. R. and Laux, D. E. Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet. 8:459-470, 1999.

93. Balog, R. P., Emi Ponce de Souza, Y., Tang, H. M., et al. Parallel assessment of CpG methylation by two-color hybridization with oligonucleotide arrays. Anal. Biochem. 309:301-310, 2002.

94. Shi, H., Maier, S., Nimmrich, I., et al. Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J. Cell Biochem. 88:138-143, 2003.

95. Li, L. C. and Dahiya, R. MethPrimer: designing primers for methy-lation PCRs. Bioinformatics 18:1427-1431, 2002.

96. Singal, R. and Grimes, S. R. Microsoft Word macro for analysis of cytosine methylation by the bisulfite deamination reaction. Biotechniques 30:116-120, 2001.

97. Esteller, M., Corn, P. G., Baylin, S. B., and Herman, J. G. A gene hypermethylation profile of human cancer. Cancer Res. 61:3225-3229, 2001.

98. Laird, P. W. Early detection: the power and the promise of DNA methylation markers. Nat. Rev. Cancer. 3:253-266, 2003.

99. Lee, W. H., Isaacs, W. B., Bova, G. S., and Nelson, W. G. CG island methylation changes near the GSTP1 gene in prostatic carcinoma cells detected using the polymerase chain reaction: a new prostate cancer biomarker. Cancer Epidemiol. Biomarkers Prev. 6:443-450, 1997.

100. Wong, I. H., Lo, Y. M., and Johnson, P. J. Epigenetic tumor markers in plasma and serum: biology and applications to molecular diagnosis and disease monitoring. Ann. N YAcad. Sci. 945:36-50, 2001.

101. Jahr, S., Hentze, H., Englisch, S.,et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61:1659-1665, 2001.

102. Belinsky, S. A., Nikula, K. J., Palmisano, W. A., et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. USA 95:11,891-11,896, 1998.

103. Ahrendt, S. A., Chow, J. T., Xu, L. H., et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J. Natl. Cancer Inst. 91:332-339, 1999.

104. Goessl, C., Muller, M., Straub, B., and Miller, K. DNA alterations in body fluids as molecular tumor markers for urological malignancies. Eur. Urol. 41:668-676, 2002.

105. Evron, E., Dooley, W. C., Umbricht, C. B., et al. Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 357:1335-1336, 2001.

106. Vogelstein, B., Fearon, E. R., Hamilton, S. R., et al. Clonal analysis using recombinant DNA probes from the X-chromosome. Cancer Res. 47:4806-48013, 1987.

107. van Kamp, H., Jansen, R., Willemze, et al. Studies on clonality by PCR analysis of the PGK-1 gene. Nucleic Acids Res. 19:2794, 1991.

108. Uchida, T., Ohashi, H., Aoki, E., et al. Clonality analysis by methy-lation-specific PCR for the human androgen-receptor gene (HUMARA-MSP). Leukemia 14:207-212, 2000.

109. Nakahara, Y., Suzuki, H., Ohashi, H., et al. Clonality analysis of granulocytes and T lymphocytes in healthy females by the PCR-based HUMARA method. Int. J. Hematol. 69:237-243.

110. Kubota, T., Das, S., Christian, S. L., Baylin, S. B., Herman, J. G. and Ledbetter, D. H. (1997) Methylation-specific PCR simplifies imprinting analysis. Nat. Genet. 16:16-17, 1999.

111. Zeschnigk, M., Lich, C., Buiting, K., Doerfler, W., and Horsthemke, B. A single-tube PCR test for the diagnosis of Angelman and Prader-Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur. J. Hum. Genet. 5:94-98, 1997.

112. Kosaki, K., McGinniss, M. J., Veraksa, A. N., McGinnis, W. J., and Jones, K. L. Prader-Willi and Angelman syndromes: diagnosis with a bisulfite-treated methylation-specific PCR method. Am. J. Med. Genet. 73:308-313, 1997.

113. Baumer, A. Analysis of the methylation status of imprinted genes based on methylation-specific polymerase chain reaction combined with denaturing high-performance liquid chromatography. Methods 27:139-143,2002.

114. Couvert, P., Poirier, K., Carrie, A., DHPLC-based method for DNA methylation analysis of differential methylated regions from imprinted genes. Biotechniques 34:356-362, 2003.

115. Esteller, M., Hamilton, S. R., Burger, P. C., Baylin, S. B., and Herman, J. G. Inactivation of the DNA repair gene O6-methylgua-nine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 59:793-797, 1999.

116. Esteller, M., Garcia-Foncillas, J., Andion, E.,et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343:1350-1354, 2000.

117. Esteller, M., Gaidano, G., Goodman, S. N., et al. Hypermethylation of the DNA repair gene O(6)-methylguanine DNA methyltrans-ferase and survival of patients with diffuse large B-cell lymphoma. J. Natl. Cancer Inst. 94:26-32, 2002.

118. Li, G. M. The role of mismatch repair in DNA damage-induced apoptosis. Oncol. Res. 11:393-400, 1999.

119. Elsaleh, H., Shannon, B., and Iacopetta, B. Microsatellite instability as a molecular marker for very good survival in colorectal cancer patients receiving adjuvant chemotherapy. Gastroenterology 120:1309-1310, 2001.

120. Hemminki, A., Mecklin, J. P., Jarvinen, H., Aaltonen, L. A., and Joensuu, H. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology 119:921-928, 2000.

121. Whitehall, V. L., Walsh, M. D., Young, J., Leggett, B. A., and Jass, J. R. Methylation of O-6-methylguanine DNA methyltransferase characterizes a subset of colorectal cancer with low-level DNA microsatellite instability. Cancer Res. 61:827-830, 2001.

122. Jass, J. R., Walsh, M. D., Barker, M., Simms, L. A., Young, J., and Leggett, B.A. Distinction between familial and sporadic forms of colorectal cancer showing DNA microsatellite instability. Eur. J. Cancer 38:858-866, 2002.

123. Boland, C. R., Thibodeau, S. N., Hamilton, S. R., et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58:5248-5257, 1998.

124. Warnecke, P. M., Stirzaker, C., Melki, J. R., Millar, D. S., Paul, C. L., and Clark, S. J. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res. 25: 4422-4426, 1997.

Other Clinical Diagnostic Technologies iv

Was this article helpful?

0 0
My First Baby

My First Baby

Are You Prepared For Your First Baby? Endlessly Searching For Advice and Tips On What To Expect? Then You've Landed At The Right Place With All The Answers! Are you expecting? Is the time getting closer to giving birth to your first baby? So many mothers to be are completely unprepared for motherhood and the arrival of a little one, but stress not, we have all the answers you need!

Get My Free Ebook

Post a comment