References

Grow Taller 4 Idiots

How to Grow Taller

Get Instant Access

1. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409: 860-921, 2001.

2. Ito, M., Mori, Y., Oiso, Y., et al. A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. J. Clin. Invest. 87:725-728, 1991.

3. Kadowaki, T., Bevins, C. L., Ojamaa, K., et al. Two mutant alleles of the insulin receptor gene in a patient with extreme insulin resistance. Science 240:787-790, 1988.

4. Krook, A., Brueton, L., and O'Rahilly, S. Homozygous nonsense mutation in the insulin receptor gene in infant with leprechaunism. Lancet 342:277-278, 1993.

5. Wertheimer, E., Lu, S. P., Backeljauw, P. F., et al. Homozygous deletion of the human insulin receptor gene results in leprechaunism. Nat. Genet. 5:71-73,1993.

6. Hone, J., Accili, D., Psiachou, H., et al. Homozygosity for a null allele in a patient with leprechaunism. Hum. Mutat. 6:17-22, 1995.

7. Longo, N., Wang, Y., Smith, S. A., et al. Genotype-phenotype correlation in inherited severe insulin resistance. Hum. Mol. Genet., 11: 1465-1475, 2002.

8. Lubahn, D. B, Brown, T. R., Simental, J. A., et al. Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity. Proc. Natl. Acad. Sci. USA 86:9534-9538, 1989.

9. McPhaul, M. J. Molecular defects of the androgen receptor. Rec. Prog. Horm. Res.57:181-194, 2002.

10. Weinstein, L. S., Shenker, A., Gejman, P. V., et al. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N. Engl. J. Med. 325:1688-1695, 1991.

11. Schwindinger, W. F,, Francomano, C. A., and Levine, M. A. Identification of a mutation in the gene encoding the a subunit of the stimulatory G protein of adenyl cyclase in McCune-Albright syndrome. Proc. Natl. Acad. Sci.USA 89:5152-5156, 1992.

12. Lumbroso, S., Paris, F., and Sultan, C. McCune-Albright syndrome: molecular genetics. J. Pediatr. Endocrinol. Metab. 15:875-882, 2002.

13. Rimoin, D. L., Phillips, J.A. III. Genetic disorders of the pituitary gland, in Principles and Practice of Medical Genetics, 3rd ed. Rimoin, D. L., Connor, J. M., and Pyeritz, R. E., eds Churchill Livingstone, New York, 1997, pp. 1331-1364.

14. Cogan, J. D. and Phillips, J.A. III. Inherited defects in growth hormone synthesis and action, in The Metabolic and Molecular Bases of Inherited Disease, 8th ed., Scriver, C.R., Beaudet, A.L., Sly, W. S., and Valle, D., eds. McGraw-Hill, New York, 2001, pp. 4159-4180.

15. Vnencak-Jones, C. L., Phillips, J. A., III, Chen, E. Y., et al. Molecular basis of human growth hormone gene deletions. Proc. Natl. Acad. Sci. USA 85:5615-5619, 1988.

16. Mullis, P. E., Akinci, A., Kanaka, C. H., et al. Prevalence of human growth hormone-1 gene deletions among patients with isolated growth hormone deficiency from different populations. Pediatr. Res. 31:532-534, 1992.

17. Duquesnoy, P., Amselem, S., Gourmelen, M., et al. A frameshift mutation causing isolated growth hormone deficiency type 1A. Am. J.Hum. Genet 47:A110, 1990.

18. Cogan, J. D., Phillips, J. A., III, Sakati, N. A., et al. Molecular analysis of familial growth hormone deficiency. The Endocrine Society Program and Abstracts 321, 1992.

19. Cogan, J. D., Phillips, J. A., III, Sakati, N. A., et al. Heterogeneous growth hormone (GH) gene mutations in familial GH deficiency. J. Clin. Endocrinol. Metab. 76:1224-1228, 1993.

20. Phillips, J. A., III, Parks, J. S., Hjelle, B. L., et al. Genetic basis of familial isolated growth hormone deficiency type I. J. Clin. Invest. 70:489-495, 1982.

21. Rimoin, D. L., and Schechter, J. E. Histological and ultrastructural studies of isolated growth hormone deficiency. J. Clin. Endocrinol. Metab. 37:725-735, 1973.

22. Rogol, A. D., Blizzard, M. R., Foley, T. P., Jr., et al. Growth hormone releasing hormone and growth hormone: genetic studies in familial growth hormone deficiency. Pediatr. Res. 19:489-492, 1985.

23. Abdul-Latif, H. D., Brown, M. R., Parks, J. S., et al. Mutation of intron 4 of the GH1 gene causes GH deficiency. The Endocrine Society Program and Abstracts, 470, 1995.

24. Igarashi, Y., Ogawa, M., Kamijo, T., et al. A new mutation causing inherited growth hormone deficiency: a compound heterozygote of a 6.7 kb deletion and two base deletion in the third exon of the GH1 gene. Hum. Mol. Genet. 2:1073-1074, 1993.

25. Rimoin, D. L. Genetic disorders of the pituitary gland, in Emery, A. E. H. and Rimoin, D. L., eds. Edinburgh, Principles and Practice of Medical Genetics, Churchill Livingstone, 1983, pp. 1134-1151.

26. McGuinness, L., Magoulas, C., Sesay, A. K., et al. Autosomal dominant growth hormone deficiency disrupts secretory vesicles in vitro and in vivo in transgenic mice. Endocrinology 144:720-731, 2003.

27. Binder, G., and Ranke, M. B. Screening for growth hormone (GH) gene splice-site mutations in sporadic cases with severe isolated GH deficiency using ectopic transcript analysis. J. Clin. Endocrinol. Metab. 80:1247-1252, 1995.

28. Cogan, J. D., Ramel, B., Lehto, M., et al. A recurring dominantnegative mutation causes autosomal dominant growth hormone deficiency. J. Clin. Endocrinol.Metab. 80:3591-3595, 1995.

29. Cogan, J. D., Prince, M. A., Lekhakula, S., et al. A novel mechanism of aberrant pre-mRNA splicing in humans. Hum. Mol. Genet. 6:909-912, 1997.

30. Moseley, C. T., Mullis, P. E., Prince, M. A., et al. An exon splice enhancer mutation causes autosomal dominant growth hormone deficiency. J. Clin. Endocrinol. Metab. 87:847-852, 2002.

31. Wajnrajch, M. P., Gertner, J. M., Mullis, P. E., et al. Arg183His, a new mutational "hot-spot" in the growth hormone gene causing isolated GH deficiency type II. J. Endocr. Genet. 1:125-135, 2001.

32. Duriez, B., Duquesnoy, P., Dastot, F., et al. An exon-skipping mutation in the btk gene of a patient with X-linked agammaglobulinemia and isolated growth hormone deficiency. FEBS Lett. 346:165-170, 1994.

33. Laumonnier, F., Ronce, N., Hamel, B. C. J., et al. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am.J.Hum.Genet. 71:1450-1455, 2002.

34. Kowarski, A. A., Schneider, J., Ben-Galim, E., et al. Growth failure with normal serum RIA-GH and low somatomedin activity: Somatomedin restoration and growth acceleration after exogenous GH. J. Clin. Endocrinol.Metab. 47:461-464, 1978.

35. Rudman, K., Kutner, M. H., Blackston, R. D., et al. Children with normal-variant short stature: treatment with human growth hormone for six months. N. Engl. J. Med. 305:123-131, 1981.

36. Takahashi, Y., Kaji, H., Okimura, Y., et al. Short stature caused by a mutant growth hormone. N.Engl. J. Med. 334:432-436, 1996.

37. Wajnrajch, M. P., Gertner, J. M., Harbison, M. D., et al. Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nat. Genet. 12:88-90, 1996.

38. Bauman, G., and Maheshwari, H. The dwarfs of Sindh: severe growth hormone deficiency caused by a mutation in the GH-releasing hormone receptor gene. Acta Paediatr, 423(Suppl.):33-38, 1997.

39. Salvatori, R., Gondo, R. G., de Aguirar Oliveira, M. H., et al. Familial isolated growth hormone deficiency due to a novel mutation in the growth hormone-releasing hormone receptor. J. Clin. Endocrinol.Metab. 84:917-923, 1999.

40. Pertzelan, A., Adam, A., and Laron, Z. Genetic aspects of pituitary dwarfism due to absence or biological inactivity of growth hormone. Israel J.Med. Sci. 4:895-900, 1968.

41. Laron, Z., Pertzelan, A., Karp, M., et al. Administration of growth hormone to patients with familial dwarfism with high plasma immunoreactive growth hormone: measurement of sulfation factor, metabolic and linear growth response. J. Clin. Endocrinol. Metab. 33:332-342, 1971.

42. Jacobs, L. S., Sneid, S. D., Garland, J. T., et al. Receptor-active growth hormone in Laron dwarfism. J. Clin. Endocrinol. Metab. 42: 403-406, 1976.

43 Adam, A., Josefsberg, Z., Pertzelan, A., et al. Occurrence of four types of growth hormone-related dwarfism in Israeli communities. Eu .J. Pediatr. 137:35-39, 1981.

44. Woods, K. A., Fraser, N. C., Postel-Vinay, M. C., et al. A homozy-gous splice site mutation affecting the intracellular domain of the growth hormone (GH) receptor resulting in Laron syndrome with elevated GH-binding protein. J. Clin. Endocrinol. Metab. 81:1686-1690, 1996.

45. Godowski, P. J., Leung, D. W., Meacham, L. R., et al. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc. Natl. Acad. Sci. USA 86:8083-8087, 1989.

46. Amselem, S., Duquesnoy, P., Attree, O., et al. Laron dwarfism and mutation of the growth hormone-receptor gene. N. Engl. J. Med. 321:989-995, 1989.

47. Duquesnoy, P., Sobrier, M. L., Amselem, S., et al. Defective membrane expression of human growth hormone (GH) receptor causes Laron-type GH insensitivity syndrome. Proc. Natl. Acad. Sci. USA 88:10,272-10,276, 1991.

48. Amselem ,S., Sobrier, M. L., Duquesnoy, P., et al. Recurrent nonsense mutations in the growth hormone receptor from patients with Laron dwarfism. J.Clin. Invest. 87:1098-1102, 1991.

49. Phillips, J. A., III. Molecular biology of growth hormone receptor dysfunction. Acta Paediatr. Scand. 383(Suppl.): 127-131, 1992.

50. Buchanan, C. R., Maheshwari, H. G., Norman, M. R., et al. Laron-type dwarfism with apparently normal high affinity serum growth hormone-binding protein. Clin. Endocrinol. 35:179-185, 1991.

51. Duquesnoy, P., Sobrier, M. L., Duriez, B., et al. A single amino acid substitution in the exoplasmic domain of the human growth hormone (GH) receptor confers familial GH resistance (Laron syndrome) with positive GH-binding activity by abolishing receptor homodimerization. EMBO J. 13:1386-1395, 1994.

52. Rosenbloom, A. L., Guevara-Aguirre, J., Rosenfeld, R. G., et al. The little women of Loja—growth hormone-receptor deficiency in an inbred population of southern Ecuador. N. Engl. J. Med. 323: 1367-1374, 1990.

53. Berg, M. A., Guevara-Aguirre, J., Rosenbloom, A. L., et al. Mutation creating a new splice site in the growth hormone receptor genes of 37 Ecuadorian patients with Laron syndrome. Hum. Mutat. 1:24-32, 1992.

54. Woods, K. A., Camacho-Hubner, C., Savage, M. O., et al. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor 1 gene. N. Engl. J.Med. 335:1363-1367, 1996.

55. Rogol, A. D., Blizzard, M. R., Foley, T. P., Jr., et al. Growth hormone releasing hormone and growth hormone: genetic studies in familial growth hormone deficiency. Pediatr. Res. 19:489-492, 1985.

56. Dattani, M. T., Martinez-Barbera, J. P., Thomas, P. Q., et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat. Genet. 19:125-133, 1998.

57. Netchine, I., Sobrier, M. L., Krude, H., et al. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat. Genet. 25:182-186, 2000.

58. Li, S., Crenshaw, E. B., 3rd, Rawson, E. J., et al. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347:528-533, 1990.

59. Tatsumi, K., Miyai, K., Notomi, T., et al. Cretinism with combined hormone deficiency caused by a mutation in the Pit-1 gene. Nat. Genet. 1:56-58, 1992.

60. Ohta, K., Nobukuni, Y., Mitsubichi, H., et al. Mutations in the Pit-1 gene in children with combined pituitary hormone deficiency. Biochem. Biophys. Res. Commun. 189:851-855, 1992.

61. Wit, J. M., Drayer, N. M., Jansen, M., et al. Total deficiency of growth hormone and prolactin, and partial deficiency of thyroid stimulating hormone in two Dutch families: a new variant of hereditary pituitary deficiency. Horm. Res. 32:170-177, 1989.

62. Pfaffl, R. W., DiMattia, G. E., Parks, J. S., et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 257:1118-1121, 1992.

63. Irie, Y., Tatsumi, K., Ogawa, M., et al. A novel E250X mutation of the Pit-1 gene in a patient with combined pituitary hormone deficiency. Endoc . J. 42:351-354, 1995.

64. Pelligrini-Bouiller, I., Belicar, P., Barlier, A., et al. A new mutation of the gene encoding the transcription factor Pit-1 is responsible for combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 81:2790-2796, 1996.

65. Radovick, S., Nations, M., Du, Y., et al. A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science 257:1115-1118, 1992.

66. Wu, W., Cogan, J. D., Pfaffle, R. W., et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat. Genet. 18:147-149, 1998.

67. Cogan, J. D., Wu, W., Phillips, J. A., III, et al. The PROP1 2-bp deletion is a common cause of CPHD. J. Clin. Endocrinol. Metab. 83:3346-3349, 1998.

68. Fofanova, O., Takamura, N., Kinoshita, E., et al. Compound heterozygous deletion of the PROP-1 gene in children with combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 83: 2601-2604, 1998.

69. Lagerstrom-Fermer, M., Sundvall, M., Johnsen, E., et al. X-linked recessive panhypopituitarism associated with a regional duplication in Xq25-q26. Am. J. Hum. Genet. 60:910-916, 1997.

70. Fujiwara, H., Tatsumi, K., Miki, K., et al. Congenital hypothyroidism caused by a mutation in the Na+/I- symporter. Nat. Genet. 16:124-125, 1997.

71. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. MIM Number: {605646}: {12/4/2002}. Available at http://www.ncbi.nlm.nih.gov/omim/ (accessed December 13, 2002).

72. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. MIM Number: {606765}. Available at http://www.ncbi.nlm.nih.gov/omim/ (accessed March, 30, 2003).

73. Refetoff, S., Weiss, R. E., Usala, S. J., et al. The syndromes of resistance to thyroid hormone. Endocr. Rev. 14:348-399, 1993.

74. Levine, M. A., Ahn, T. G. , Klupt, S. F., et al. Genetic deficiency of the alpha subunit of the guanine nucleotide-binding protein Gs as the molecular basis for Albright hereditary osteodystropy. Proc. Natl. Acad. Sci. USA 85:617-621, 1998.

75. Farfel, Z., Bourne, H. R., Iiri, T. The expanding spectrum of G protein diseases. N. Engl. J. Med. 340:1012-1020, 1999.

76. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. MIM Number: {601199}. Available at http://www.ncbi.nlm.nih.gov/omim/ (accessed December 10, 2002).

77. Pollak, M. R., Brown, E. M., Chou, Y. W., et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75:1297-1303, 1993.

78. Pollak, M. R., Brown, E. M., Estep, H. L., et al. Autosomal dominant hypocalcemia caused by a Ca2+-sensing receptor gene mutation. Nat. Genet. 8:303-307, 1994.

79. Perry, Y. M., Finegold, D. N., Armitage, M. M., et al. A missense mutation in the Ca-sensing receptor gene causes familial autosomal dominant hypoparathyroidism. Am. J. Hum. Genet. 55(S1):79, 1994.

80. Guru, S. C., Manickam, P., Crabtree, J. S., et al. Identification and characterization of the multiple endocrine neoplasia type 1 (MEN1) gene. J. Intern. Med. 243:433-439, 1998.

81. Brandi, M. L., Gagel, R. F., Angeli, A., et al. Consensus: guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab. 86:5658-5671, 2001.

82. Sanso, G. E., Domene, H. M., Rudaz, M. C. G., et al. Very early detection of RET proto-oncogene mutation is crucial for preventive thyroidectomy in multiple endocrine neoplasia type 2 children. Cancer 94:323-330, 2002.

83. Takahasi, M., Asai, N., Iwashita, T., et al. Molecular mechanisms of development of multiple endocrine neoplasia 2 by RET mutations. J. Intern. Med. 243(6):509-513, 1998.

84. Mulligan, L. M., Marsh, D. J., Robinson, B. G., et al. Genotype-phenotype correlation in multiple endocrine neoplasia type 2: report of the International RET Mutation Consortium. J. Intern. Med. 238:343-346, 1995.

85. Carlson, K. M., Dou, S., Chi, D., et al. Single missense mutation in the tyrosine kinase catalytic domain of the RET proto-oncogene is associated with multiple endocrine neoplasia type 2B. Proc. Natl. Acad. Sci. USA 91:1579-1583, 1994.

86. Eng, C., Smith, D. P., Mulligan, L. M., et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum. Mol. Genet. 3:237-241, 1994.

87. Gimm, O., Marsh, D. J., Andrew, S. D., et al. Germline dinucleotide mutation in codon 883 of the RET proto-oncogene in multiple endocrine neoplasia type 2B without codon 918 mutation. J. Clin. Endocrinol. Metab. 82:3902-3904, 1997.

88. Smith, D. P., Houghton, C., Ponder, B. A., et al. Germline mutation of RET codon 883 in two cases of de novo MEN 2B. Oncogene 15:1213-1217, 1997.

89. Eng, C., Smith, D. P., Mulligan, L. M., et al. A novel point mutation in the tyrosine kinase domain of the RET proto-oncogene in sporadic medullary thyroid carcinoma and in a family with FMTC. Oncogene 10:509-513, 1995.

90. Bolino, A., Shuffenecker, I., Luo, Y., et al. RET mutations in exons 13 and 14 of FMTC patients. Oncogene 10:2415-2419, 1995.

91. Hofstra, R. M., Fattoruso, O., Quadro, L., et al. A novel point mutation in the intracellular domain of the ret proto-oncogene in a family with medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 82:4176-4178, 1997.

92. Berndt, I., Reuter, M., Saller, B., et al. A new hot spot for mutations in the ret proto-oncogene causing familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2A. J. Clin. Endocrinol. Metab 83:770-774, 1998.

93. Rey, J. M., Brouillet, J. P., Fonteneau-Allaire, J., et al. Novel germline RET mutation segregating with papillary thyroid carcinomas. Genes Chromosomes Cancer 32:390-391, 2001.

94. Hoppner, W., Ritter, M. M. A duplication of 12 bp in the critical cysteine rich domain of the RET proto-oncogene results in a distinct phe-notype of multiple endocrine neoplasia type 2A. Hum. Mol. Genet.6: 587-590, 1997.

95. Hoppner, W., Dralle, H., and Brabant. G. Duplication of 9 base pairs in the critical cysteine-rich domain of the RET proto-oncogene causes multiple endocrine neoplasia type 2A. Hum. Mutat. 1 (Suppl. 1):S128-S130, 1998.

96. Lips, C. J., Landsvater, R. M., Hoppnener, J. W., et al. Clinical screening as compared with DNA analysis in families with multiple endocrine neoplasia type 2A. N. Engl. J. Med. 331:828-835, 1994.

97. Bartsch, D. K., Hasse, C., Schug, C., et al. A RET double mutation in the germline of a kindred with FMTC. Exp. Clin. Endocrinol. Diabetes 108:128-132, 2000.

98. Miyauchi, A., Futami, H., Hai, N., et al. Two germline missense mutations at codons 804 and 806 of the RET proto-oncogene in the same allele in a patient with multiple endocrine neoplasia type 2B without codon 918 mutation. Jpn. J. Cancer Res. 90:1-5, 1999.

99. American Academy of Pediatrics Committee on Bioethics. Policy Statement: Ethical issues with genetic testing in pediatrics. Pediatrics 107:1451-1455, 2001.

100. ASHG/ACMG. Points to consider: ethical, legal, and psychological implications of genetic testing in children and adolescents. Am. J. Hum. Genet. 57:1233-1241, 1995.

101. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 22(S1):S5-S19, 1999.

102. Stride, A., and Hattersley, A. T. Different genes, different diabetes: lessons from maturity-onset diabetes of the young. Ann. Med. 34:207-216, 2002.

103. Fajans, S. S., Bell, G. I., and Polonsky, K. S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med. 345:971-980, 2001.

104. Velho, G., and Robert, J. J. Maturity-onset diabetes of the young (MODY): genetic and clinical characteristics. Horm. Res. 57:29-33, 2002.

105. Frayling, T. M., Evans, J. C., Bulman, M. P., et al. P-Cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 50(Suppl. 1):S94-S100, 2001.

106. Matschinsky, F. M., Glaser, B., and Magnuson, M. A. Pancreatic P-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes 47:307-315, 1998.

107. Froguel, P., Vaxillaire, M., Sun, F., et al. Close linkage of glucoki-nase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature 356:162-164, 1992.

108. Vionnet, N., Stoffel, M., Takeda, J., et al. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature 356:721-722, 1992.

109. Yamagata, K., Furuta, H., Oda, N., et al. Mutations in the hepato-cyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 384:458-460, 1996.

110. Ryffel, G. U. Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J. Mol. Endocrinol. 27:11-29,2001.

111. Thomas, H., Jaschkowitz, K., Bulman, M., et al. A distant upstream promoter of the HNF-4a gene connects the transcription factors involved in maturity-onset diabetes of the young. Hum. Mol. Genet. 10:2089-2097, 2001.

112. Gloyn, A. L., Ellard, S., Shepherd, M., et al. Maturity-onset diabetes of the young caused by a balanced translocation where the 20q12 break point results in disruption upstream of the coding region of hepatocyte nuclear factor-4a (HNF4A) gene. Diabetes 51: 2329-2333, 2002.

113. Yamagata, K., Oda, N., Kaisaki, P. J., et al. Mutations in the hepatocyte nuclear factor-1-alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384:455-458, 1996.

114. Kaisaki, P. J, Menzel, S., Lindner, T., et al. Mutations in the hepatocyte nuclear factor-1 alpha gene in MODY and early-onset NIDDM: evidence for a mutational hotspot in exon 4. Diabetes; 46: 528-535, 1997.

115. Stoffers,D. A., Ferrer, J., Clarke,W. L., et al. Early-onset type II diabetes mellitus (MODY4) linked to IPF1. Nat. Genet. 17:138-139, 1997.

116. Hui, H., and Perfetti, R. Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood. Eu . J. Endocrinol. 146:129-141, 2002.

117. Stoffers, D. A., Zinkin, N. T., Stanojevic, V., et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat, Genet. 15:106-110, 1997.

118. Horikawa, Y., Iwasaki, N., Hara, M., et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat. Genet. 17:384-385, 1997.

119. Nishigori, H., Yamada, S.,Kohama, T., et al. Frameshift mutation, A263fsinsGG, in the hepatocyte nuclear factor-1P gene associated with diabetes and renal dysfunction. Diabetes 47:1354-1355, 1998.

120. Lindner, T. H., Nj0lstad, P. R, Horikawa, Y., et al. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1p. Hum. Mol. Genet. 8:2001-2008.

121 .Malecki, M. T., Jhala, U. S., Antonellis, A., et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat. Genet. 23:323-328, 1999.

122. Naya, F. J., Huang, H. P., Qiu, Y., et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev. 11: 2323-2334,1997.

123. Delepine, M., Nicolino, M., Barrett, T., et al. EIF2AK3, encoding translation initiation factor 2-a kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat. Genet. 25:406-409,2000.

124. Shi, Y., Taylor, S. I., Tan, S. L., et al. When translation meets metabolism: multiple links to diabetes. Endocr. Rev. 24:91-101,2003.

125. Strom, T. M., Hörtnagel, K., Hofmann, S., et al. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum. Mol. Genet. 7:2021-2028, 1998.

126. Inoue, H., Tanizawa, Y., Wasson, J., et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat. Genet. 20:143-148, 1998.

127. Khanim, F., Kirk, J., Latif, F., et al. WFS1/Wolframin mutations, Wolfram syndrome, and associated diseases. Hum. Mutat. 17:357-367, 2001.

128. Van den Ouweland, J. M., Lemkes, H. H., Ruitenbeek, W., et al. Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally inherited diabetes mellitus and deafness. Nat. Genet. 1:368-371, 1998.

129. Velho, G., Byrne, M. M., Clement, K., et al. Clinical phenotypes, insulin secretion, and insulin sensitivity in kindreds with maternally inherited diabetes and deafness due to mitochondrial tRNA sup Leu(UUR) gene mutation. Diabetes 45:478-487, 1996.

130. Redondo, M. J., and Eisenbarth, G. S. Genetic control of autoimmu-nity in type 1 diabetes and associate disorders. Diabetologia 45:605-622, 2002.

131. The Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17:399-403, 1997.

132. Nagamine, K., Peterson, P., Scott, H. S., et al. Positional cloning of the APECED gene. Nat. Genet. 17:393-398, 1997.

133. Chatila, T. A., Blaeser, F., Ho, N., et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation (sic) syndrome. J. Clin. Invest. 106:R75-R81, 2000.

134. McCarthy, M., and Menzel, S. The genetics of type 2 diabetes. B . J. Clin. Pharmacol. 51:195-199, 2001.

135. Medici, F., Hawa, M., Ianari, A., et al. Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia 42:146-150, 1999.

136. Van Tilburg, J., van Haeften, T. W., Pearson, P., et al. Defining the genetic contribution of type 2 diabetes mellitus. J. Med. Genet. 38: 569-578, 2001.

137. Horikawa, Y., Oda, N., Cox, N. J, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet. 26:163-175, 2000.

138. Cox, N. J. Challenges in identifying genetic variation affecting susceptibility to type 2 diabetes: examples from studies of the calpain-10 gene. Hum. Mol. Genet. 10:2301-2305, 2001.

139. Hirschhorn, J. N., Lohmueller, K., Byrne, E., et al. A comprehensive review of genetic association studies. Genet. Med. 4:45-61, 2002.

140. Lohmueller, K. E., Pearce, C. L., Pike, M., et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet. 33:177-182, 2003.

Was this article helpful?

0 0
Diabetes Sustenance

Diabetes Sustenance

Get All The Support And Guidance You Need To Be A Success At Dealing With Diabetes The Healthy Way. This Book Is One Of The Most Valuable Resources In The World When It Comes To Learning How Nutritional Supplements Can Control Sugar Levels.

Get My Free Ebook


Post a comment