References

1. Golub, T. R. Genome-wide views of cancer. N. Engl. J. Med. 344:601-602, 2001.

2. Mohr, S., Leikauf, G. D., Keith, G., and Rihn, B. H. Microarrays as cancer keys: an array of possibilities. J. Clin. Oncol. 20:3165-3175, 2002.

3. Chung, C. H., Bernard, P. S., and Perou, C. M. Molecular portraits and the family tree of cancer. Nat. Genet. 32(Suppl.):533-540, 2002.

4. Bain, B. J. Routine and specialised techniques in the diagnosis of haematological neoplasms. J. Clin. Pathol. 48:501-508, 1995.

5. Perou, C. M., Sorlie, T., Eisen, M. B., et al. Molecular portraits of human breast tumours. Nature 406:747-752, 2000.

6. Golub, T. R., Slonim, D. K., Tamayo, P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531-537, 1999.

7. Schena, M., Shalon, D., Davis R. W., and Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467-470, 1995.

8. Ashburner, M., Ball, C. A., Blake, J. A., et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25:25-29, 2000.

9. Lorentz, C. P., Wieben, E. D., Tefferi, A., Whiteman, D. A, and Dewald, G. W. Primer on medical genomics part I. History of genetics and sequencing of the human genome. Mayo Clin. Proc. 77:773-782, 2002.

10. Stoeckert, C. J., Jr., Causton, H. C., and Ball, C. A. Microarray databases: standards and ontologies. Nat. Genet. 32 (Suppl.):469-473, 2002.

11. Lander, E. S., Linton, L. M., Birren, B., et al. Initial sequencing and analysis of the human genome. Nature 409:860-921, 2001.

12. van de Vijver, M. J., He,Y. D., van't Veer, L. J., et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347:1999-2009, 2002.

13. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O., and Davis, R. W. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93:10,614-10,619, 1996.

14. Bhattacharjee, A., Richards, W. G., Staunton, J., et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA 98:13,790-13,795, 2001.

15. Ramaswamy, S., Ross, K. N., Lander, E. S., and Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33:49-54, 2003.

16. Alizadeh, A. A., Eisen, M. B., Davis, R. E., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503-511, 2000.

17. Brown, P. Available at http://cmgm.stanford.edu/pbrown/. 2003.

18. Gershon, D. Microarray technology: an array of opportunities. Nature 416:885-891, 2002.

19. Tefferi, A., Bolander, M. E., Ansell, S. M., Wieben, E. D., and Spelsberg, T. C. Primer on medical genomics. Part III: Microarray experiments and data analysis. Mayo Clin. Proc. 77:927-940, 2002.

20. Cheung, V. G., Morley, M., Aguilar, F., Massimi, A., Kucherlapati, R., and Childs, G. Making and reading microarrays. Nat. Genet. 21:15-19, 1999.

21. Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J. M. Expression profiling using cDNA microarrays. Nat. Genet. 21:10-14, 1999.

22. Ermolaeva, O., Rastogi, M., Pruitt, K. D., et al. Data management and analysis for gene expression arrays. Nat. Genet. 20:19-23, 1998.

23. Qiagen. RNeasy Mini Handbook, 3rd ed., Qiagen, Valencia, CA, 2001.

24. Ramdas, L., Wang, J., Hu, L., Cogdell, D., Taylor, E., and Zhang, W. Comparative evaluation of laser-based microarray scanners. Biotechniques 31:546, 548, 550, passim, 2001.

25. Kohane, I. S., Kho, A. T., and Butte, A. J. Microarrays for an Integrative Genomics. Computational Molecular Biology. MIT Press, Cambridge, MA, pp. xviii and 306, 2003.

26. Quackenbush, J. Microarray data normalization and transformation. Nat. Genet. 32(Suppl.):496-501, 2002.

27. King, H. C. and Sinha, A. A. Gene expression profile analysis by DNA microarrays: promise and pitfalls. JAMA 286:2280-2288, 2001.

28. Oleksiak, M. F., Churchill, G. A., and Crawford, D. L. Variation in gene expression within and among natural populations. Nat. Genet. 32:261-266, 2002.

29. Churchill, G. A. Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32(Suppl.):490-495, 2002.

30. Affymetrix. GeneChip Arrays for DNA Analysis, Affymetrix, Santa Clara, CA, 2003.

31. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. High density synthetic oligonucleotide arrays. Nat. Genet. 21:20-24, 1999.

32. Li, C. Available at http://biosun1.harvard.edu/complab/dchip/, 2003.

33. Irizarry, R., Hobbs, B., Collin, F., et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249-264, 2003.

34. Li, C., and Hung Wong, W. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2:RESEARCH0032, 2001.

35. Affymetrix. Microarray Suite User's Guide v.5.0., Affymetrix, Santa Clara, CA, 2003.

36. Blanchard, A. P. and Hood, L. Hight-density oligonucleotide arrays. Biosens. Bioelectr. 11:687-690, 1996.

37. Singh-Gasson, S., Green, R. D., Yue, Y., et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol. 17:974-978, 1999.

38. Hughes, T. R., Mao, M., Jones, A. R., et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19:342-347, 2001.

39. McGall, G., Labadie, J., Brock, P., Wallraff, G., Nguyen, T., and Hinsberg, W. Light-directed synthesis of high-density oligonu-cleotide arrays using semiconductor photoresists. Proc. Natl. Acad. Sci. USA 93:13,555-13,560, 1996.

40. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., et al. Laser capture microdissection. Science 274:998-1001, 1996.

41. Luo, L., Salunga, R. C., Guo, H., et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat. Med. 5:117-122, 1999.

42. Tannapfel, A., Geissler, F., Witzigmann, H., Hauss, J., and Wittekind, C. Analysis of liver allograft rejection related genes using cDNA-microarrays in liver allograft specimen. Transplant. Proc. 33: 3283-3284, 2001.

43. Kitahara, O., Furukawa, Y., Tanaka, T., et al. Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia. Cancer Res. 61:3544-3549, 2001.

44. Curran, S., McKay, J. A., McLeod, H. L., and Murray, G. I. Laser capture microscopy. Mol. Pathol. 53:64-68, 2000.

45. Rubin, M. A. Use of laser capture microdissection, cDNA microar-rays, and tissue microarrays in advancing our understanding of prostate cancer. J. Pathol. 195:80-86, 2001.

46. Wang, E., Miller, L. D., Ohnmacht, G. A., Liu, E. T., and Marincola, F. M. High-fidelity mRNA amplification for gene profiling. Nat. Biotechnol. 18:457-459, 2000.

47. Aoyagi, K., Tatsuta, T., Nishigaki, M., et al. A faithful method for PCR-mediated global mRNA amplification and its integration into microarray analysis on laser-captured cells. Biochem. Biophys. Res. Commun. 300:915-920, 2003.

48. Iscove, N. N., Barbara, M., Gu, M., Gibson, M., Modi, C., and Winegarden, N. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat. Biotechnol. 20:940-943, 2002.

49. Feldman, A. L., Costouros, N. G., Wang, E., et al. Advantages of mRNA amplification for microarray analysis. Biotechniques 33:906-9112,914,2002.

50. Lee, M. L., Kuo, F. C., Whitmore, G. A., and Sklar, J. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl. Acad. Sci. USA 97:9834-9839, 2000.

51. Kerr, M. K. and Churchill, G. A. Statistical design and the analysis of gene expression microarray data. Genet. Res. 77:123-128, 2001.

52. Brown, P. O. and Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21:33-37, 1999.

53. Gygi, S. P., Rochon,Y., Franza, B. R., and Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19:1720-1730, 1999.

54. Chuaqui, R. F., Bonner, R. F., Best, C. J., et al. Post-analysis follow-up and validation of microarray experiments. Nat. Genet. 32(Suppl.): 509-514, 2002.

55. Anderson, L. and Seilhamer, J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533-537, 1997.

56. Golub, T. R. Genomic approaches to the pathogenesis of hematologic malignancy. Curr. Opin. Hematol. 8:252-261, 2001.

57. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. Serial analysis of gene expression. Science 270:484-487, 1995.

58. Patino, W. D., Mian, O. Y., and Hwang, P. M. Serial analysis of gene expression: technical considerations and applications to cardiovascular biology. Circ. Res. 91:565-569, 2002.

59. Polyak, K. and Riggins, G. J. Gene discovery using the serial analysis of gene expression technique: implications for cancer research. J. Clin. Oncol. 19:2948-2958, 2001.

60. Ishii, M., Hashimoto, S., Tsutsumi, S., et al. Direct comparison of GeneChip and SAGE on the quantitative accuracy in transcript profiling analysis. Genomics 68:136-143, 2000.

61. Kallioniemi, A., Kallioniemi, O. P., Sudar, D., et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818-821, 1992.

62. Pinkel, D., Segraves, R., Sudar, D., et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20:207-211, 1998.

63. Pollack, J. R., Perou, C. M., Alizadeh, A.A., et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 23:41-46, 1999.

64. Wang, D. G., Fan, J. B., Siao, C. J., et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077-1082, 1998.

65. Lindblad-Toh, K., Tanenbaum, D. M., Daly, M. J., et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nat. Biotechnol. 18:1001-1005, 2000.

66. Packeisen, J., Buerger, H., Krech, R., and Boecker, W. Tissue microarrays: a new approach for quality control in immunohisto-chemistry. J. Clin. Pathol. 55:613-615, 2002.

67. Camp, R. L., Charette, L. A., and Rimm, D. L. Validation of tissue microarray technology in breast carcinoma. Lab. Invest. 80:19431949, 2000.

68. Chee, M., Yang, R., Hubbell, E., et al. Accessing genetic information with high-density DNA arrays. Science 274:610-614, 1996.

69. Hedenfalk, I., Duggan, D., Chen, Y., et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344:539-548, 2001.

70. Mir, K. U. and Southern, E. M. Sequence variation in genes and genomic DNA: methods for large-scale analysis. Annu. Rev. Genomics Hum. Genet. 1:329-360, 2000.

71. Hacia, J. G. and Collins, F. S. Mutational analysis using oligonucleotide microarrays. J. Med. Genet. 36:730-736, 1999.

72. Liotta, L. A. and Petricoin, E. F. Beyond the genome to tissue pro-teomics. Breast Cancer Res. 2:13-14, 2000.

73. Fields, S. Proteomics. Proteomics in genomeland. Science 291:1221-1224, 2001.

74. Pandey, A. and Mann, M. Proteomics to study genes and genomes. Nature 405:837-846, 2000.

75. Pardanani, A., Wieben, E. D., Spelsberg, T. C., and Tefferi, A. Primer on medical genomics. Part IV: Expression proteomics. Mayo Clin. Proc. 77:1185-1196, 2002.

76. Kepler, T. B., Crosby, L., and Morgan, K. T. Normalization and analysis of DNA microarray data by self-consistency and local regression. Genome Biol. 3:RESEARCH0037, 2002.

77. Zhu, H., Bilgin, M., Bangham, R., et al. Global analysis of protein activities using proteome chips. Science 293:2101-2105, 2001.

78. Siuzdak, G. The emergence of mass spectrometry in biochemical research. Proc. Natl. Acad. Sci. USA 91:11,290-11,297, 1994.

79. Buetow, K. H., Edmonson, M., MacDonald, R., et al. High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. USA 98:581-584, 2001.

80. Toronen, P., Kolehmainen, M., Wong, G., and Castren, E. Analysis of gene expression data using self-organizing maps. FEBS Lett. 451:142-146, 1999.

81. Rhodes, D. R., Barrette, T. R., Rubin, M. A., Ghosh, D., and Chinnaiyan, A. M. Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res. 62:4427-4433, 2002.

82. van't Veer, L. J., Dai, H., van de Vijver, M. J., et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530-536, 2002.

83. Hoffmann, R., Seidl, T., and Dugas, M. Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis. Genome Biol. 3:RESEARCH0033, 2002.

84. Tseng, G. C., Oh, M. K., Rohlin, L., Liao, J. C., and Wong, W. H. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res. 29:2549-2557, 2001.

85. Schadt, E. E., Li, C., Ellis, B., and Wong, W. H. Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J. Cell Biochem. 37(Suppl.): 120-125, 2001.

86. Dudoit, S., Shaffer, J. P., and Boldrick, J. C. Multiple hypothesis testing in microarray experiments. U. C. Berkeley Division of Biostatistics Working Paper Series, Working Paper 110, pp. 1-52, 2002.

87. Wu, T. D. Analysing gene expression data from DNA microarrays to identify candidate genes. J. Pathol. 195:53-65, 2001.

88. Heyer, L. J., Kruglyak, S., and Yooseph, S. Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 9:1106-1115, 1999.

89. Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classification. Wiley, New York, pp. xx and 654, 2001.

90. Brazma, A. and Vilo, J. Gene expression data analysis. FEBS Lett. 480:17-24, 2000.

91. Sherlock, G. Analysis of large-scale gene expression data. Curr. Opin. Immunol. 12:201-205, 2000.

92. Gasch, A. P. and Eisen, M. B. Exploring the conditional coregula-tion of yeast gene expression through fuzzy k-means clustering. Genome Biol. 3:RESEARCH0059, 2002.

93. Yeang, C. H., Ramaswamy, S., Tamayo, P., et al. Molecular classification of multiple tumor types. Bioinformatics 17(Suppl. 1): S316-S322, 2001.

94. Li, L., Weinberg, C. R., Darden, T. A., and Pedersen, L. G. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17:1131-1142, 2001.

95. Tamames, J., Clark, D., Herrero, J., et al. Bioinformatics methods for the analysis of expression arrays: data clustering and information extraction. J. Biotechnol. 98:269-283, 2002.

96. Berrar, D. P., Downes, C. S., and Dubitzky, W. Multiclass cancer classification using gene expression profiling and probabilistic neural networks. Pacific Symposium on Biocomputing, pp. 5-16, 2003.

97. Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., and Haussler, D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906-914, 2000.

98. Ramaswamy, S., Tamayo, P., Rifkin, R., et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. USA 98:15,149-15,154, 2001.

99. Tan, A. C. and Gilbert, D. An empirical comparison of supervised machine learning techniques in bioinformatics, Asian Pacific Bioinformatics Conference, Adelaide, Australia, 2003.

100. Venables, W. N. and Ripley, B. D. Modern applied Statistics with S. Statistics and Computing. Springer-Verlag, New York, pp. xi and 495, 2002.

101. Ripley, B. D. Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge, pp. xi, and 403, 1996.

102. Brazma, A., Hingamp, P., Quackenbush, J., et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29:365-371, 2001.

103. Dudoit, S., Gentleman, R. C., and Quackenbush, J. Open source software for the analysis of microarray data. Biotechniques Suppl:45-51, 2003.

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment