1. Saiki, R. K., Scharf, S., Faloona, F., et al. Enzymatic amplification of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350-1354, 1985.

2. Mullis, K. B. and Faloona, F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155:335-350, 1987.

3. Brock, T. D. and Freeze, H. Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J. Bacteriol. 98:289-297, 1969.

4. Chien, A., Edgar, D. B. and Trela, J. M. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bacteriol. 127:1550-1557, 1976.

5. Saiki, R. K., Gelfand, D. H., Stoffel, S., et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487-491, 1988.

6. FMC BioProducts Catalog 1995, Technical Applications, FMC Bio Products, p. 70.

7. Jorgenson, J. W. and Lucas, K. D. Capillary zone electrophoresis. Science 222:266-272, 1983.

8. Tiselius, A. A new apparatus for electrophoretic analysis of colloidal mixtures. Trans. Faraday Soc. 33:524, 1937.

9. Oda, R. P. and Landers, J. P. Introduction to capillary electrophoresis. in Handbook of Capillary Electrophoresis, Landers, J. P., ed., CRC, Boca Raton, FL, pp. 1-48, 1997.

10. Ruiz-Martinez, M. C., Berka, J., Belenkii, A., Foret, F., Miller, A. W., and Karger, B. L. DNA sequencing by capillary electrophoresis with replaceable linear polyacrylamide and laser-induced fluorescence detection. Anal. Chem. 65:2851-2858, 1993.

11. Albarghouthi, M. N. and Barron, A. E. Polymeric matrices for DNA sequencing by capillary electrophoresis. Electrophoresis 21: 4096-4111 2000.

12. Albarghouthi, M. N., Buchholz, B. A., Huiberts, P. J., Stein, T. M., and Barron, A. E. Poly-N-hydroxyethylacrylamide (polyDuramide): a novel, hydrophilic, self-coating polymer matrix for DNA sequencing by capillary electrophoresis. Electrophoresis 23:1429-1440, 2002.

13. Heller, C. Influence of polymer concentration and polymer composition on capillary electrophoresis of DNA, in Introduction to the Capillary Electrophoresis of Nucleic Acids: Volume 1, Mitchelson, K. R. and Cheng, J., Eds. Humana, Totowa, NJ, pp. 111-123, 2000.

14. Chiari, M., Cretich, M., Damin, F., Ceriotto, L., and Consonni, R. New adsorbed coatings for capillary electrophoresis. Electrophoresis 21:909-916, 2000.

15. Orita, M., Suzuki, Y., Sekiya, T., and Hiayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874-879, 1989.

16. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. p53 mutations in human cancers. Science 253:49-53, 1991.

17. Levine, A. J., Momand, J., and Finlay, C. A. Thep53 tumor suppressor gene. Nature 351:453-456, 1991.

18. Sheffield, V. C., Beck, J. S., Kwitek, A. E., Sandstrom, D. W., and Stone, E. M. The sensitivity of single-strand conformational polymorphism analysis for the detection of single base substitutions Genomics 16:325-332, 1993.

19. Myers, R. M., Lerman, L. S., and Maniatis, T. Saturation mutagenesis of cloned DNA fragments. Science 229:242-247, 1985.

20. Highsmith, W. E., Jr., Nataraj, A. J., Jin, Q., et al. Use of DNA toolbox for the characterization of mutation scanning methods. II. Evaluation of single-strand conformation polymorphism analysis. Electrophoresis 20:1195-1203, 1999.

21. Lin-Goerke, J. Ye, S., and Highsmith, W. E. Effects of gel matrix on the sensitivity of SSCP analysis: a study of the effects of novel gel matrices, fragment size, GC content, and base alteration. Am. J. Hum. Genet. 55 (suppl.):A188, 1994.

22. Ravnik-Glavac, M., Glavac, D., and Dean, M. Sensitivity of SSCP and heteroduplex method for mutation detection in the cystic fibrosis gene. Hum. Mol. Genet. 3:801-807, 1994.

23. Ren, J. High-throughput single-strand conformation polymorphism analysis by capillary electrophoresis. J. Chromatogr. B 741: 115-128,2000.

24. Kourkine, I. V., Hestekin, C. N., Buchholz, B., and Barron, A. E. High-throughput, high-sensitivity genetic mutation detection by tandem single-strand conformation polymorphism/heteroduplex analysis capillary array electrophoresis. Anal. Chem. 74: 25652572, 2002.

25. Atha, D., Wentz, H. M., Morehead, H., Tian, J., and O'Connel, C. D. Detection of p53 point mutations by single strand conformation polymorphism: analysis by capillary electrophoresis. Electrophoresis 19:172-179; 1998.

26. Wentz, H. M., Ramachandra, S., O'Connell, C. D. and Atha, D. Identification of known p53 point mutations by capillary electrophoresis using unique mobility profiles in a blinded study. Mutat. Res. 382:121-132, 1998.

27. Higasa, K., Kukita, Y., Baba, S., and Hayashi, K. Software for machine-independent quantitative interpretation of SSCP in capillary array electrophoresis. BioTechniques 33:1342-1348, 2002.

28. O'Connel, C. D., Atha, D., Oldenburg, M., et al. Detection of p53 gene mutations: analysis by single-strand conformation polymorphism and Cleavase fragment length polymorphism. Electrophoresis 20:1211-1223, 1999.

29. Liechti-Gallati, S., Schnieder, V., Neeser, D., and Kraemer, R. Two buffer PAGE system-based SSCP/HD analysis: a general protocol for rapid and sensitive mutation screening in cystic fibrosis and any other human genetic disease. Eur. J. Hum. Genet. 7: 590-598, 1999.

30. Bhattacharyya, A. and Lilley, D. M. J. The contrasting structures of mismatched DNA sequences containing looped-out bases (bulges) and multiple mismatches (bubbles). Nucleic. Acids Res. 17: 6821-6840, 1989.

31. Keen, J., Lester, D., Inglehaern, C., Curtus, A., and Bhattacharaya, S. Improved detection of heteroduplexes on Hydrolink gels. Trends Genet. 7:5, 1991.

32. Molinari, R. J., Conners, M., and Shorr, R. G. Hydrolink gels for electrophoresis, in Advances in Electrophoresis, Volume 6, Chrambach, A., Dunn, M. J., and Radola, B. J., eds., VCH, New York, pp. 44-60, 1993.

33. Highsmith, W. E., Jr., Jin, Q., Nataraj, A. J., et al. Use of a DNA toolbox for the characterization of mutation scanning methods. I. Construction of the toolbox and evaluation of heteroduplex analysis. Electrophoresis 20:1186-1194, 1999.

34. Ganguly, A., Rock, M. J., and Prockop, D. J. Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes. Proc. Natl. Acad. Sci. USA 90:10325-10329, 1993.

35. Ganguly, A. An update on conformation sensitive gel electrophore-sis. Hum. Mutat. 19(4):334-342, 2002.

36. Calladine, C. R., Collins, C. M., Drew, H. R., and Mott, M. R. A study of the electrophoretic mobility of DNA in agarose and pol-yarylamide gels. J. Mole. Biol. 221:981-1005, 1991.

37. Myers, R. M., Lumelsky, N., Lerman, L. S., and Maniatis, T. Detection of single base substitutions in total genomic DNA. Nature 313:495-498, 1985.

38. Lerman, L. S. and Silverstein, K. Computational simulation of DNA melting and its application to denaturing gradient gel electrophore-sis. Methods Enzymol. 155:482-501, 1987.

39. Abrams, E. S., Murdaugh, S. E., and Lerman, L. S. Comprehensive detection of single base changes in human genomic DNA using denaturing gradient gel electrophoresis and a GC clamp Genomics 7:463-475, 1990.

40. Saleeba, J. A., Ramus, S. J., and Cotton, R. G. H. Complete mutation detection using unlabeled chemical cleavage. Hum. Mutat. 1:63-69,1992.

41. Cotton, R. G. H. Cleavage of mismatched based using chemical reagents. in Mutation Detection: A Practical Approach, Cotton, R. G. H., Edkins, E., Forrest, S., eds. Oxford University Press, Oxford 1998.

42. Myers, R. M., Larin, Z., and Maniatis, T. Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA : DNA duplexes. Science 230:1242-1246, 1985.

43. Gibbs, R. A., and Caskey, C. T. Identification and localization of mutations at the Lesch-Nyhan locus by ribonuclease A cleavage. Science 236:303-305, 1987.

44. Marini, J. C., Lewis, M. B., Wang, Q., Chen, K. J. and Orrison, B. M. Serine for glycine substitutions in type I collagen in two cases of type IV osteogenesis imperfecta (OI). J. Biol. Chem. 268: 2667-2673,1993.

45. Forrester, K., Almoguera, C., Han, K., Grizzle, W. E. and Perucho, M. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327:298-303, 1987.

46. Murthy, K. K., Shen, S. -H., and Banville D. a sensitive method for detection of mutations: A PCR-based RNase Protection assay. DNA Cell. Biol. 14:87-94, 1995.

47. Goldrick, M. M., Kimball, G. R., Liu, Q., Martin, L. A., Sommer, S. S., and Tseng, J. Y. NIRCA: a rapid robust method for screening for unknown point mutations. Biotechniques. 21:106-112, 1996.

48. Yoshino, K., Nishigaki, K., and Husimi, Y. Temperature sweep gel electrophoresis: a simple method to detect point mutations. Nucleic Acids Res. 19:3153, 1991.

49. Wong, L. J., Liang, M. H., Kwon, H., Park, J., Bai, R. K., and Tan, D.J. Comprehensive scanning of the entire mitochondrial genome for mutations. Clin. Chem. 48:1901-1912, 2002.

50. Cotton, R. G. H., Rodrigues, N. R., and Campbell, R. D. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxlamine and osmium tetoxide and its application to the study of mutations. Proc. Natl. Acad. Sci. USA 85:4397-4401, 1988.

51. Goldrick, M. M. RNase cleavage-based methods for mutation/SNP detection, past and present. Hum. Mutat. 18:190-204, 2001.

52. Kogan, S. C., Doherty, M., and Gitschier, J. An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. N. Engl. J. Med. 317:985-990, 1987.

53. Feldman, G. L., Williamson, R., Beaudet, A. L., and O'Brien, W. E. Prenatal diagnosis of cystic fibrosis by DNA amplification for detection of KM-19 polymorphism. Lancet 8602:102, 1988.

54. Yuan, R. Structure and mechanism of multifunctional restriction endonucleases. Annu. Rev. Biochem. 50:285-315, 1981.

55. Highsmith, W. E., Burch, L. H., Zhou, Z., et al. Identification of a splice site mutation (2789 + 5G > A) associated with small amounts of normal cystic fibrosis transmembrane conductance regulator mRNA and mild cystic fibrosis. Hum. Mutat. 9:332-338, 1997.

56. Haliassos, A., Chomel, J. C., Tesson, L., et al. Modification of enzy-matically amplified DNA for the destruction of point mutations. Nucleic Acids Res. 17:3606, 1989.

57. Friedman, K. J., Highsmith, W. E., and Silverman, L. M. Detecting multiple cystic fibrosis mutations by polymerase chain reaction-mediated site-directed mutagenesis. Clin. Chem. 37:753-755, 1991.

58. Gasparini, P., Bonizzato, A., Dognini, M., and Pignatti, P. F. Restriction site generating-polymerase chain reaction (RG-PCR) for the probeless detection of hidden genetic variation: application to the study of some common cystic fibrosis mutations. Mol. Cell. Probes 6:1-7, 1992.

59. Lindeman, R., Hu, S. P., Volpato, F., and Trent, R. J. Polymerase chain reaction (PCR) mutagenesis enabling rapid non-radioactive detection of common P-thalassaemia mutations in Mediterraneans. Br. J. Haematol. 78:100-104, 1991.

60. Maxam, A. M. and Gilbert W. A new method for sequencing DNA A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74: 560-564, 1977.

61. Sanger, F., Nicklen, S., and Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci USA 74: 54635467, 1977.

62. Franca, L. T. C., Carriho, E., and Kist, T. B. L. A review of DNA sequencing techniques. Qu. Rev. Biophys. 35:169-200, 2000.

63. Slatko, B. E., Albright, L. M., and Tabor, S. DNA sequencing: commentary. in Current Protocols in Molecular Biology, Ausubel, F. M., Brent, R., Kingston, R. E., et al., eds., Wiley, New York, pp. 7.4A. 19-7.4A.39, 1998.

64. Tabor, S. and Richardson, C. C. Selective oxidation of the exonucle-ase domain of the bacteriophage T7 DNA polymerase. J. Biol. Chem. 262:15,330-15,333, 1987.

65. Tabor, S. and Richardson, C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 84:4767-4771, 1987.

66. Tabor, S. and Richardson, C. C. Effect of manganese ions on the incorporation of dideoxynucleotides by T7 DNA polymerase and E. coli DNA polymerase. Proc. Natl. Acad. Sci. USA 86:4076-4080, 1989.

67. Tabor, S. and Richardson, C. C. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy and dideoxyribonucleotides. Proc. Natl. Acad. Sci. USA 92: 6339-6343, 1995.

68. Smith, L., Fung, S., Hunkapiller, M., Hunkapiller, T., and Hood, L. The synthesis of oligonucleotides containing an aliphatic amino group at the 5' terminus: synthesis of fluorescent DNA primers for use in DNA sequnce analysis. Nucleic Acids Res. 13:2399-2412, 1985.

69. Smith, L., Sanders, J., Kaiser, R., et al. Fluorescence detection in automated DNA sequence analysis. Nature 321:674-679, 1986.

70. Ansorge, W., Sproat, B., Stegemann, J., Schwager, C., and Zenke, M. Automated DNA sequencing: ultrasensitive detection of fluorescence bands during electrophoresis. Nucleic Acids Res. 15: 4593-4602, 1987.

71. Ju, J., Ruan, C., Fuller, C. W., Glazer, A. N., and Mathies, R. A. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc. Natl. Acad. Sci. USA 92:4347-4351, 1995.

72. Lee, L. G., Spurgeon, S. L., Heiner, C. R., et al. New energy transfer dyes for DNA sequencing. Nucleic Acids Res. 25:2816-2822, 1997.

73. Zakeri, H., Amparo, G., Chen, S. M., Spurgeon, S., and Kwok, P. Y. Peak height pattern in dichlororrhodamine and energy transfer dye terminator sequencing. BioTechniques 25:406-414, 1998.

74. Rosenblum, B. B., Lee, L. G., Spurgeon, S. L., et al. New dye-labeled terminators for improved DNA sequence patterns. Nucleic Acids Res. 25:4500-4504, 1997.

75. Huang, X. C., Quesada, M. A., and Mathies, R. A. DNA sequencing using capillary array electrophoresis. Anal. Chem. 64:2149-2154, 1992.

76. Kambara, H. and Takahashi, S. Multiple-sheathflow capillary array DNA analyser. Nature 361:565-566, 1993.

77. Ueno, K. and Yeung, E. S. Simultaneous monitoring of DNA fragments separated by electrophoresis in a multiplexed array of 100 capillaries. Anal. Chem. 66:1424-1431, 1994.

78. Carrilho, E. DNA sequencing by capillary array electrophoresis and microfabricated array systems. Electrophoresis 21:55-65, 2000.

79. Kheterpal, I. and Mathies, R. A. Capillary array electrophoresis. Anal. Chem. 71:A31-A37, 1999.

80. Ewing, B., Hillier, L., Wendl, M. C., and Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy Assesment. Genome Res. 8:175-185, 1998.

81. Lee, L. G., Connell, C. R., Woo, S. L., et al. DNA sequencing with dye-labeled terminators and T7 DNA polymerase: effect of dyes and dNTPs on incorporation of dye-terminators and probability analysis of termination fragments. Nucleic Acids Res. 20:694-699, 1992.

82. Ewing, B. and Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8:186-194, 1998.

83. Richterich, P. Estimation of errors in "raw" DNA sequences: a validation study. Genome Res. 8:251-259, 1998.

84. Wilson, J. W. Update on antiretroviral drug resistance testing: combining laboratory technology with patient care. AIDS Reader 13: 25-30, 2003.

Was this article helpful?

0 0
10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment