References

1. La Spada, A., Wilson, E., Lubahn, D., Harding, A., and Fischbeck, K. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77-79, 1991.

2. La Spada, A. R., Paulson, H. L., and Fischbeck, K. H. Trinucleotide repeat expansion in neurological disease. Ann. Neurol. 36:814-822, 1994.

3. Plassart, E. and Fontaine, B. Genes with triplet repeats: a new class of mutations causing neurological diseases. Biomed. Pharmacother. 48:191-197, 1994.

4. Cummings, C. J. and Zoghbi, H. Y. Fourteen and counting: unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 9:909-916, 2000.

5. Durr, A. and Brice, A. Clinical and genetic aspects of spinocerebellar degeneration. Curr. Opini. Neurol. 13:407-413, 2000.

6. Matsuura, T., Yamagata, T., Bugess, D., et al. Rare expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat. Genet. 26:191-194, 2000.

7. Liquori, C., Ricker, K., Moseley, M., et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:864-867, 2001.

8. Ophoff, R. A., Terwindt, G. M., Vergouwe, M. N., et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543-552, 1996.

9. Riess, O., Schols, L., Bottger, H., et al. SCA6 is caused by moderate CAG expansion in the alpha1A-voltage-dependent calcium channel gene. Hum. Mol. Genet. 6:1289-1293, 1997.

10. Caskey, C. T., Pizzuti, A., Fu, Y. H., Fenwick, R. G., Jr., and Nelson, D. L. Triplet repeat mutations in human disease. Science 256:784-789, 1992.

11. Fu, Y., Kuhl, D., Pizzuti, A., et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67:1047-1058, 1991.

12. Zuhlke, C., Riess, O., Bockel, B., Lange, H., and Thies, U. Mitotic stability and meiotic variability of the (CAG)n repeat in the Huntington disease gene. Hum. Mol. Genet. 2:2063-2067, 1993.

13. Snow, K., Tester, D. J., Kruckeberg, K. E., Schaid, D. J., and Thibodeau, S. N. Sequence analysis of the fragile X trinucleotide repeat: implications for the origin of the fragile X mutation. Hum. Mol. Genet. 3:1543-1551, 1994.

14. Zoghbi, H. Y. and Orr, H. T. Spinocerebellar ataxia type 1. Semin. Cell Biol. 6:29-35, 1995.

15. Snow, K., Doud, L. K., Hagerman, R., Pergolizzi, R. G., Erster, S. H., and Thibodeau, S. N. Analysis of a CGG sequence at the FMR-1 locus in fragile X families and in the general population. Am. J. Hum. Genet. 53:1217-1228, 1993.

16. Dombrowski, C., Levesque, S., Morel, M., Rouillard, P., Morgan, K., and Rousseau, F. Premutation and intermediate-size FMR1 alleles in 10,572 males from the general population: loss of an AGG interruption is a late event in the generation of fragile X syndrome alle-les. Hum. Mol. Genet. 11:371-378, 2002.

17. La Spada, A., Roling, D., Harding, A., Warner, C., and Spiegel, R. Meiotic stability and genotype-phenotype correlation of the trinu-cleotide repeat in X-linked spinal and bulbar muscular atrophy. Nat. Genet. 2:301-304, 1992.

18. Maciel, P., Gaspar, C., DeStefano, A. L., et al. Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am. J. Hum. Genet. 57:54-61, 1995.

19. Nagafuchi, S., Yanagisawa, H., Sato, K., et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat. Genet. 6:14-18, 1994.

20. Tsilfidis, C., MacKenzie, A. E., Mettler, G., Barcelo, J., and Korneluk, R. G. Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nat. Genet. 1:192-195, 1992.

21. Vonsattel, J., Myers, R., Stevens, T., Ferrante, R., Bird, E., and Richardson, E. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 44:559-577, 1985.

22. Orr, H. T., Chung, M. Y., Banfi, S., et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 4:221-226, 1993.

23. Andrew, S. E., Goldberg, Y. P., Kremer, B., et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat. Genet. 4:398-403, 1993.

24. Durr, A., Cossee, M., Agid, Y., et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med. 335: 1169-1175, 1996

25. De Michele, G., Filla, A., Cavalcanti, F., et al. Late onset Friedreich's disease: clinical features and mapping of mutation to the FRDA locus. J. Neurol. Neurosurg. Psychiatry 57:977-979, 1994.

26. Palau, F., De Michele, G., Vilchez, J. J., et al. Early-onset ataxia with cardiomyopathy and retained tendon reflexes maps to the Friedreich's ataxia locus on chromosome 9q. Ann. Neurol. 37: 359-362, 1995.

27. Babovic-Vuksanovic, D., Snow, K., Patterson, M. C., and Michels, V. Spinocerebellar ataxia type 2 in an infant with extreme CAG repeat expansion. Am. J. Med. Genet. 79:383-387, 1998.

28. Johansson, J., Forsgren, L., Sandgren, O., Brice, A., Holmgren, G., and Holmberg, M. Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum. Mol. Genet. 7:171-176, 1998.

29. Reyniers, E., Vits, L., De Boulle, K., et al. The full mutation in the FMR-1 gene of male fragile X patients is absent in their sperm. Nat. Genet. 4:143-146, 1993.

30. Fu, Y. H., Pizzuti, A., Fenwick, R. G., Jr., et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255:1256-1258, 1992.

31. Pianese, L., Cavalcanti, F., De Michele, G., et al. The effect of parental gender on the GAA dynamic mutation in the FRDA gene. Am. J. Hum. Genet. 60:460-463, 1997.

32. Moutou, C., Vincent, M. C., Biancalana, V., and Mandel, J. L. Transition from premutation to full mutation in fragile X syndrome is likely to be prezygotic. Hum. Mol. Genet. 6:971-979, 1997.

33. Mhatre, A. N., Trifiro, M. A., Kaufman, M., et al. Reduced transcrip-tional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nat. Genet. 5:184-188, 1993.

34. Coffee, B., Zhang, F., Warren, S. T., and Reines, D. Acetylated his-tones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat. Genet. 22:98-101, 1999.

35. Cossee, M., Campuzano, V., Koutnikova, H., et al. Frataxin fracas. Nat. Genet. 15:337-338, 1997.

36. Timchenko, L., Monckton, D. G., and Caskey, C. T. Myotonic dystrophy: an unstable CTG repeat in a protein kinase gene. Semin. Cell Biol. 6:13-19, 1995.

37. Fardaei, M. and Larkin, K. Myotonic dystrophy: a multigene disorder. Brain Res. Bull. 56:389-395, 2001.

38. Klesert, T. R., Otten, A. D., Bird, T. D., and Tapscott, S. J. Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nat. Genet. 16:402-406, 1997.

39. Campuzano, V., Montermini, L., Molto, et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423-1427, 1996.

40. Hamdan, H., Tynan, J. A., Fenwick, R. A., and Leon, J. A. Automated detection of trinucleotide repeats in Fragile X Syndrome. Mol. Diagn. 2:259-269, 1997.

41. Taylor, A., Safanda, J., Fall, M., et al. Molecular predictors of cognitive impairment in female carriers of Fragile X syndrome. JAMA 271:507-514, 1994.

42. Baraitser, M. In The Genetics of Neurological Disorders 3rd ed., Baraitser, M., ed., Oxford University Press, Oxford, 1997, pp. 1770-1779.

43. Melki, J., Lefebvre, S., Burglen, L., et al. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science 264:1474-1477, 1994.

44. Lefebvre, S., Burglen, L., Reboullet, S., et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155-165, 1995.

45. Roy, N., Mahadevan, M. S., McLean, M., et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80:167-178, 1995.

46. Carter, T. A., Bonnemann, C. G., Wang, C. H., et al. A multicopy transcription-repair gene, BTF2p44, maps to the SMA region and demonstrates SMA associated deletions. Hum. Mol. Genet. 6:229-236, 1997.

47. Scharf, J. M., Endrizzi, M. G., Wetter, A., et al. Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nat. Genet. 20:83-86, 1998.

48. Burglen, L., Lefebvre, S., Clermont, O., et al. Structure and organization of the human survival motor neurone (SMN) gene. Genomics 32:479-482, 1996.

49. Hahnen, E., Forkert, R., Marke, C., et al. Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy: evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum. Mol. Genet. 4:1927-1933, 1955.

50. Rudnik-Schoneborn, S., Rohrig, D., Morgan, G., Wirth, B., and Zerres, K. Autosomal recessive proximal spinal muscular atrophy in 101 sibs out of 48 families: clinical picture, influence of gender, and genetic implications. Am. J. Med. Genet. 51:70-76, 1994.

51. Cobben, J. M., van der Steege, G., Grootscholten, P., de Visser, M., Scheffer, H., and Buys, C. H. Deletions of the survival motor neuron gene in unaffected siblings of patients with spinal muscular atrophy. Am. J. Hum. Genet. 57:805-808, 1995.

52. Sendtner, M. Molecular mechanisms in spinal muscular atrophy: models and perspectives. Curr. Opin. Neurol. 14:629-634, 2001.

53. Lorson, C., Hahnen, E., Androphy, E. and Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 96:6307-6311, 1999.

54. Wirth, B., Rudnik-Schoneborn, S., Hahnen, E., Rohrig, D., and Zerres, K. Prenatal prediction in families with autosomal recessive proximal spinal muscular atrophy (5q11.2-q13.3): molecular genetics and clinical experience in 109 cases. Prenat. Diagn. 15:407-417, 1995.

55. van der Steege, G., Grootscholten, P. M., van der Vlies, P., et al. PCR-based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy. Lancet 345:985-986, 1995.

56. Wang, C. H., Xu, J., Carter, T. A., et al. Characterization of survival motor neuron (SMNT) gene deletions in asymptomatic carriers of spinal muscular atrophy. Hum. Mol. Genet. 5: 359-365, 1996.

57. Ogino, S. and Wilson, R. B. Genetic testing and risk assessment for spinal muscular atrophy (SMA). Hum. Genet. 111:477-500, 2002.

58. Viskochil, D., White, R., and Cawthon, R. The neurofibromatosis type 1 gene. Ann. Rev. Neurosci. 16:183-205, 1993.

59. Upadhyaya, M., Shaw, D. J., and Harper, P. S. Molecular basis of neurofibromatosis type 1 (NF1): mutation analysis and polymorphisms in the NF1 gene. Hum. Mutat. 4:83-101, 1994.

60. Johnson, M. R., DeClue, J. E., Felzmann, S., et al. Neurofibromin can inhibit Ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Mol. Cell. Biol. 14:641-645, 1994.

61. John, A. M., Ruggieri, M., Ferner, R., and Upadhyaya, M. A search for evidence of somatic mutations in the NF1 gene. J. Med. Genet. 37:44-49, 2000.

62. Messiaen, L. M., Callens, T., Mortier, G., et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum. Mutat. 15:541-555, 2000.

63. Heim, R., Kam-Morgan, L., Binnie, C., et al. Neurofibromatosis 1 truncating mutations are dispersed throughout the NF1 gene. Am. J. Hum. Genet. 57 (Suppl.), 1995.

64. Gatti, R. A. In The Metabolic and Molecular Basis of Inherited Disease, 8th ed., Scriver, C., Beaudet, A., Sly, W., and Valle, B., eds. McGraw-Hill, New York, 2001, pp. 709-710.

65. Gatti, R. Ataxia-telangiectasia. Dermatol. Clin. 13:1-6, 1995.

66. Swift, M., Morrell, D., Massey, R. B., and Chase, C. L. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N. Engl. J. Med. 325:1831-1836, 1991.

67. Easton, D. Cancer risks in ataxia-telangiectasia heterozygotes. Int. J. Radiat. Biol. 66(6 Suppl):177-182, 1994.

68. Savitsky, K., Bar-Shira, A., Gilad, S., et al . A single ataxia telang-iectasia gene with a product similar to PI-3 kinase. Science 268:1749-1753, 1995.

69. Teraoka, S. N., Telatar, M., Becker-Catania, S., et al. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am. J. Hum. Genet. 64:1617-1631, 1999.

70. Telatar, M., Teraoka, S., Wang, Z., et al. Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am. J. Hum. Genet. 62:86-97, 1998.

71. Gilad, S., Bar-Shira, A., Harnik, R., et al. Ataxia-telangiectasia: founder effect among north African Jews. Hum. Mol. Genet. 5:2033-2037, 1996.

72. Dyck, P., Thomas, P., and Lambert, E. Peripheral Neuropathy. W. B. Saunders, Philadelphia, 1995.

73. Dyck, P. J. Neuronal atrophy and degeneration predominantly affecting peripheral sensory and autonomic neurons, in Peripheral Neuropathy, 3rd ed., Dyck, P., Thomas, P., Griffin, J., Low, P., and Poduslo, J., eds. W. B. Saunders, Philadelphia, 1993, pp. 1065-1093.

74. Naef, R. Many facets of the peripheral myelin protein PMP22 in myelination and disease. Microsc. Res. Tech. 41:359-371, 1998.

75. Warner, L. E., Hilz, M. J., Appel, S. H., et al. Clinical phenotypes of different MPZ (P0) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas, and congenital hypomyelination. Neuron 17:451-460, 1996.

76. Nelis, E., Haites, N., and Van Broeckhoven, C. Mutations in the peripheral myelin genes and associated genes in inherited peripheral neuropathies. Hum. Mutat. 13:11-28, 1999.

77. Guilbot, A., Williams, A., Ravise, N., et al. A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. Hum. Mol. Genet. 10:415-421, 2001.

78. Warner, L. E., Mancias, P., Butler, I. J., et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat. Genet. 18:382-384, 1998.

79. Bolino, A., Muglia, M., Conforti, F. L., et al. Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat. Genet. 25:17-19, 2000.

80. Kalaydjieva, L., Gresham, D., Gooding, R., et al. N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neu-ropathy-Lom. Am. J. Hum. Genet. 67:47-58, 2000.

81. Street, V. A., Bennett, C. L., Goldy, J. D., et al. Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology 60:22-26, 2003.

82. McKusick, V. Mendelian Inheritance in Man, 12th ed., Johns Hopkins University Press, Baltimore, MD, 1998.

83. Mersiyanova, I. V., Perepelov, A. V., Polyakov, A. V., et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am. J. Hum. Genet. 67:37-46, 2000.

84. Zhao, C., Takita, J., Tanaka, Y., et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 105:587-597, 2001.

85. Bomont, P., Cavalier, L., Blondeau, F., et al. The gene encoding gigax-onin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat. Genet. 26:370-374, 2000.

86. Lupski, J. R., de Oca-Luna, R. M., Slaugenhaupt, S., et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66:219-232, 1991.

87. Chance, P. F., Alderson, M. K., Leppig, K. A., et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 72:143-151, 1993.

88. Chance, P. F., Abbas, N., Lensch, M. W., et al. Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. Hum. Mol. Genet. 3:223-228, 1994.

89. Lopes, J., Vandenberghe, A., Tardieu, S., et al. Sex-dependent rearrangements resulting in CMT1A and HNPP. Nat. Genet. 17:136-137, 1997.

90. Gabreels-Festen, A. A., Bolhuis, P. A., Hoogendijk, J. E., Valentijn, L. J., Eshuis, E. J., and Gabreels, F. J. Charcot-Marie-Tooth disease type 1A: morphological phenotype of the 17p duplication versus PMP22 point mutations. Acta Neuropathol. (Berl.) 90:645-649, 1995.

91. Nelis, E., Holmberg, B., Adolfsson, R., Holmgren, G., and van Broeckhoven, C. PMP22 Thr(118)Met: recessive CMT1 mutation or polymorphism? Nat. Genet. 15:13-14, 1997.

92. Ionasescu, V. V., Searby, C., and Greenberg, S. A. Dejerine-Sottas disease with sensorineural hearing loss, nystagmus, and peripheral facial nerve weakness: de novo dominant point mutation of the PMP22 gene. J. Med. Genet. 33:1048-1049, 1996.

93. Ionasescu, V. V., Searby, C. C., Ionasescu, R., Chatkupt, S., Patel, N., and Koenigsberger, R. Dejerine-Sottas neuropathy in mother and son with same point mutation of PMP22 gene. Muscle Nerve 20:97-99, 1997.

94. D'Urso, D., Prior, R., Greiner-Petter, R., Gabreels-Festen, A. A., and Muller, H. W. Overloaded endoplasmic reticulum-Golgi compartments, a possible pathomechanism of peripheral neuropathies caused by mutations of the peripheral myelin protein PMP22. J. Neurosci. 18:731-740, 1998.

95. Yoshikawa, H., Nishimura, T., Nakatsuji, Y., et al. Elevated expression of messenger RNA for peripheral myelin protein 22 in biopsied peripheral nerves of patients with Charcot-Marie-Tooth disease type 1A. Ann. Neurol. 35:445-450, 1994.

96. Schenone, A., Nobbio, L., Mandich, P., et al. Underexpression of messenger RNA for peripheral myelin protein 22 in hereditary neuropathy with liability to pressure palsies. Neurology 48:445-449, 1997.

97. Wise, C. A., Garcia, C. A., Davis, S. N., et al. Molecular analyses of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMTIA duplication. Am. J. Hum. Genet. 53:853-863, 1993.

98. Lupski, J. R. and Garcia, C. A. In The Metabolic and Molecular Basis of Inherited Disease, 8th ed., Scriver, C., Beaudet, A., Sly, W., and Valle, B., eds. McGraw-Hill, New York, 2001, pp. 5777-5778.

99. Shaffer, L. G., Kennedy, G. M., Spikes, A. S., and Lupski, J. R. Diagnosis of CMT1A duplications and HNPP deletions by interphase FISH: implications for testing in the cytogenetics laboratory. Am. J. Med. Genet. 69:325-331, 1997.

100. Griggs, R. C., Moxley, T., Mendell, J. R., et al. Prednisone in Duchenne dystrophy: a randomized, controlled trial defining the time course and dose response. Arch. Neurol. 48:383-388, 1991.

101. Fenichel, G. M., Florence, J. M., Pestronk, A. M., et al. Long-term benefit from prednisone therapy in Duchenne muscular dystrophy. Neurology 41:1874-1877, 1991.

102. Koenig, M., Beggs, A. H., Moyer, M., et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am. J. Hum. Genet. 45:498-506, 1989.

103. Emery, A. In Duchenne Muscular Dystrophy, 2nd ed., Emery, A., ed. Oxford University Press, New York, 1993.

104. Monaco, A. P. and Kunkel, L. M. Cloning of the Duchenne/Becker muscular dystrophy locus. Adv. Hum. Genet. 17:61-98, 1988.

105. Ervasti, J. M. and Campbell, K. P. Membrane organization of the dystrophin-glycoprotein complex. Cell 66:1121-1131, 1991.

106. Koenig, M., Hoffman, E. P., Bertelson, C. J., Monaco, A. P., Feener, C., and Kunkel, L. M. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509-517, 1987.

107. Worton, R., Molnar, M., Brais, B., and Karpati, G. In the Metabolic and Molecular Basis of Inherited Disease, 8th ed., Scriver, C., Beaudet, A., Sly, W., and Valle, B., eds. McGraw-Hill, New York, 2001, pp. 5501-5502.

108. Winnard, A., Klein, C., Coovert, D., et al. Characterization of trans-lational frame exception patients in Duchenne/Becker muscular dystrophy. Hum. Mol. Genet. 2:1347, 1993.

109. Roberts, R. G., Coffey, A. J., Bobrow, M., and Bentley, D. R. Exon structure of the human dystrophin gene. Genomics 16:536-538, 1993.

110. Beggs, A. H., Koenig, M., Boyce, F. M., and Kunkel, L. M. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum. Genet. 86:45-48, 1990.

111. Bushby, K. and Anderson, L., eds. Muscular Dystrophy Methods and Protocols Humana, Totowa, NJ, 2001.

Peripheral Neuropathy Natural Treatment Options

Peripheral Neuropathy Natural Treatment Options

This guide will help millions of people understand this condition so that they can take control of their lives and make informed decisions. The ebook covers information on a vast number of different types of neuropathy. In addition, it will be a useful resource for their families, caregivers, and health care providers.

Get My Free Ebook


Post a comment