Acknowledgements

We thank T. Williams and D. Beier for careful and critical reading of this manuscript. This work was supported by the Deutsche Forschungsgemeinschaft through grant SFB 479, the BMBF through the PathoGenoMik competence network, and the Fonds der Chemischen Industrie.

References

B. A. Dougherty, J. M. Merrick, K. MCKENNEY, G. Sutton, W. Fitzhugh,

C. Fields, J. D. Gocyne, J. Scott, R. Shirley, L. I. Liu, A. Glodek, J. M. Kelley, J. F. Weidman, C. A. Phillips, T. Spriggs,

E. Hedblum, M. D. Cotton, T. R. Utter-back, M. C. Hanna, D. T. Nguyen, D. M. Saudek, R. C. Brandon, L. D. Fine, J. L. Fritchmann, J. L. Fuhrmann, N. S. M. Geoghagen, C. L. Gnehm, L. A. McDonald, K. V. Small, C. M. Fraser, H. O. Smith, and J. C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496-512.

C. Rusniok, A. Amend, F. Baquero, P. Berche, H. Bloecker, P. Brandt, T. Chakraborty, A. Charbit, F. Ché-touani, E. Couvé, A. de Daruvar,

P. Dehoux, E. Domann, G. Dominguez-Bernal, E. Duchaud, L. Durant, O. Dus-surget, K.-D. Entian, H. Fsihi, F. Garcia-Del Portillo, P. Garrido, L. Gautier, W. Goebel, N. Gomez-Lopez, T. Hain, J. Hauf, D. Jackson, L.-M. Jones, U. Kaerst, J. Kreft, M. Kuhn, F. Kunst, G. Kurapkat, E. Madueno, A. Maitour-nam, J. Mata Vicente, E. Ng, H. Nedjari,

G. Nordsiek, S. Novella, B. de Pablos, J.-C. Pérez-Diaz, R. Purcell, B. Remmel, M. Rose, T. Schlueter, N. Simoes,

H. Voss, J. Wehland, and P. Cossart. 2001. Comparative genomics of Listeria species. Science 294:849-852.

3 Nelson, K. E., D. E. Fouts, E. F. Mongo-din, J. Ravel, R. T. DeBoy, J. F. Kolonay,

1. T. Paulsen, J. Peterson, O. White, W. C. Nelson, W. Nierman, M. J. Bea-nan, L. M. Brinkac, S. C. Daugherty,

R. J. Dodson, A. S. Durkin, R. Madupu, D. H. Haft, J. Selengut, S. Van Aken, H. Khouri, N. Fedorova, H. Forberger,

B. Tran, S. Kathariou, L. D. Wonderling, G. A. Uhlich, D. O. Bayles, J. B. Luchansky, and C. M. Fraser. 2004.

Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32:2386-2395.

P. Berche, T. Chakraborty, G. Domin-guez-Bernal, W. Goebel, B. GonzalezZorn, J. Wehland, and J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14:584-640.

5 Kuhn, M., and W. Goebel. 2005. Molecular virulence determinants of Listeria monocytogenes. In: Listeria, Listeriosis and Food Safety, 3rd edn. E. T. Ryser and E. H. Marth, editors. M. Dekker, New York

E. Gouin, and P. Cossart. 1991. Entry of Listeria monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:1127-1141.

7 Engelbrecht, F., S.-K. Chun, C. Ochs, J. Hess, F. Lottspeich, W. Goebel, and Z. Sokolovic. 1996. A new PrfA-regu-lated gene of Listeria monocytogenes encoding a small, secreted protein which belongs to the family of interna-lins. Mol. Microbiol. 21:823-837.

8 Raffelsbauer, D., A. Bubert, F. Engelbrecht, J. Scheinpflug, A. Simm, J. Hess, S. H. E. Kaufmann, and W. Goebel. 1998. The gene cluster inlC2DE of Listeria monocytogenes contains additional new internalin genes and is important for virulence in mice. Mol. Gen. Genet. 260:144-158.

9 Bierne, H., S. K. Mazmanian, M. Trost, M. G. Pucciarelli, G. Liu, P. Dehoux,

L. Jansch, F. Garcia-del Portillo, O. Schneewind, and P. Cossart. 2002. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol. Microbiol. 43:869-881.

10 Braun, L., S. Dramsi, P. Dehoux, H. Bierne, G. Lindahl, and P. Cossart. 1997. InlB: an invasion protein of Lis-

teria monocytogenes with a novel type of surface association. Mol. Microbiol. 25:285-294.

11 Marino, M., L. Braun, P. Cossart, and P. Ghosh. 1999. Structure of the lnlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Mol. Cell. 4:1063-1072.

12 Schubert, W. D., C. Urbanke, T. Ziehm, V. Beier, M. P. Machner, E. Domann,

J. Wehland, T. Chakraborty, and D. W. Heinz. 2002. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111:825-836.

13 Shen, Y., M. Naujokas, M. Park, and K. Ireton. 2000. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501-510.

R. M. Mege, and P. Cossart. 1996. E-cad-herin is the receptor for internalin, a surface protein required for entry of Listeria monocytogenes into epithelial cells. Cell 84:923-932.

15 Lecuit, M., R. Hurme, J. Pizarro-Cerda, H. Ohayon, B. Geiger, and P. Cossart. 2000. A role for a- and b-catenins in bacterial uptake. Proc. Natl. Acad. Sci. U.S.A. 97:10008-100013.

W. Ogawa, H. Sakaue, M. Kasuga, and P. Cossart. 1996. A role for phosphoino-sitide 3-kinase in bacterial invasion. Science 274:780-782.

17 Ireton, K., B. Payrastre, and P. Cossart. 1999. The Listeria monocytogenes protein InlB is an agonist of mammalian phos-phoinositide 3-kinase. J. Biol. Chem. 274:17025-17032.

18 Braun, L., B. Ghebrehiwet, and P. Cossart. 2000. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 19:1458-1466.

19 Jonquieres, R., J. Pizarro-Cerda, and P. Cossart. 2001. Synergy between the N- and C-terminal domains of InlB for efficient invasion ofnon-phagocytic cells by Listeria monocytogenes. Mol. Microbiol. 42:955-965.

20 Marino, M., M. Banerjee, R. Jonquieres, P. Cossart, and P. Ghosh. 2002. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands. EMBO J. 21:5623-5634.

21 Lecuit, M., S. Dramsi, C. Gottardi, M. Fedor-Chaiken, B. Gumbiner, and

P. Cossart. 1999. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18:3956-3963.

22 Lecuit, M., S. Vandormael-Pournin, J. Lefort, M. Huerre, P. Gounon,

C. Dupuy, C. Babinet, and P. Cossart. 2001. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722-1725.

23 Bergmann, B., D. Raffelsbauer, M. Kuhn, M. Goetz, S. Hom, and W. Goebel. 2002. InlA- but not InlB-mediated internalization of Listeria monocytogenes by non-phagocytic mammalian cells needs the support of other internalins. Mol. Microbiol. 43:557-570.

24 Palmer, M. 2001. The family of thiol-activated, cholesterol-binding cytolysins. Toxicon 39:1681-1689.

25 Cossart, P., M. F. Vicente, J. Mengaud, F. Baquero, J. C. Perez-Diaz, and

P. Berche. 1989. Listeriolysin O is essential for virulence of Listeria monocyto-genes: direct evidence obtained by gene complementation. Infect. Immun. 57:3629-3636.

26 Kathariou, S., P. Metz, H. Hof, and W. Goebel. 1987. Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J. Bacteriol. 169:1291-1297.

27 Gaillard, J. L., P. Berche, J. Mounier, S. Richard, and P. J. Sansonetti. 1987. In vitro model of penetration and intra-cellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect. Immun. 55:2822-2829.

28 Dramsi, S., and P. Cossart. 2002. Lister-iolysin O: a genuine cytolysin optimized for an intracellular parasite. J. Cell Biol. 156:943-946.

29 Decatur, A. L., and D. A. Portnoy. 2000. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290:992-995.

30 Bubert, A., Z. Sokolovic, S. K. Chun, L. Papatheodorou, A. Simm, and

W. Goebel. 1999. Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol. Gen. Genet. 261:323-336.

31 Leimeister-Wachter, M., E. Domann, and T. Chakraborty. 1991. Detection of a gene encoding a phosphatidylinositol-specific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes. Mol. Microbiol. 5:361-366.

32 Goldfine, H., and C. Knob. 1992. Purification and characterization of Listeria monocytogenes phosphatidylinositol-spe-cific phospholipase C. Infect. Immun. 60:4059-4067.

33 Geoffroy, C., J. Raveneau, J. L. Beretti, A. Lecroisey, J.-A. Vazquez-Boland, J. E. Alouf, and P. Berche. 1991. Purification and characterization of an extracellular 29-kilodalton phospholipase C from Listeria monocytogenes. Infect. Immun. 59:2382-2388.

S. Dramsi, H. Ohayon, C. Geoffroy, J. Mengaud, and P. Cossart. 1992. Nucleotide sequence of the lecithinase operon in Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect. Immun. 60:219-230.

35 Poyart, C., E. Abachin, I. Razfimanant-soa, and P. Berche. 1993. The zinc metalloprotease ofListeria monocytogenes is required for maturation of the phos-phatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect. Immun. 61:1576-1580.

36 Camilli, A., L. G. Tilney, and D. A. Port-noy. 1993. Dual roles of PlcA in Listeria monocytogenes pathogenesis. Mol. Microbiol. 8:143-157.

37 Marquis, H., V. Doshi, and D. A. Port-noy. 1995. The broad-range phospholi-pase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect. Immun. 63:4531-4534.

38 Mengaud, J., C. Geoffroy, and P. Cossart. 1991. Identification of a new operon involved in Listeria monocyto-genes virulence: its first gene encodes a protein homologous to bacterial metal-loproteases. Infect. Immun. 59:10431049.

39 Domann, E., J. Wehland, M. Rohde, S. Pistor, M. Hartl, W. Goebel, M. Lei-meister-Wachter, M. Wuenscher, and T. Chakraborty. 1992. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11:1981-1990.

P. Berche, H. Ohayon, and P. Cossart. 1992. Listeria monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521531.

41 Lasa, I., V. David, E. Gouin, J. B. Marchand, and P. Cossart. 1995. The amino-terminal part of ActA is critical for the actin-based motility ofListeria monocyto-genes; the central proline-rich region acts as a stimulator. Mol. Microbiol. 18:425-436.

42 Lasa, I., E. Gouin, M. Goethals, K. Van-compernolle, V. David, J. Vandekerc-khove, and P. Cossart. 1997. Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocy-togenes. EMBO J. 16:1531-1540.

43 Smith, G. A., J. A. Theriot, and D. A. Portnoy. 1996. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol. 135:647-660.

44 Chakraborty, T., F. Ebel, E. Domann, K. Niebuhr, B. Gerstel, S. Pistor, C. J. Temm-Grove, B. M. Jockusch, M. Reinhard, U. Walter, and J. Wehland. 1995. A focal adhesion factor directly linking intracellularly motile Listeria monocyto-genes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J. 14:1314-1321.

E. Domann, B. Gerstel, L. M. Machesky, T. Chakraborty, and J. Wehland. 2000. Mutations of arginine residues within the 146-KKRRK-150 motif of the ActA

protein of Listeria monocytogenes abolish intracellular motility by interfering with the recruitment of the Arp2/3 complex. J. Cell Sci. 113:3277-3287.

46 Zalevsky, J., I. Grigorova, and R. D. Mul-lins. 2001. Activation of the Arp2/3 complex by the Listeria ActA protein. ActA binds two actin monomers and three subunits of the Arp2/3 complex.

47 Skoble, J., D. A. Portnoy, and M. D. Welch. 2000. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocyto-genes motility. J. Cell Biol. 150:527-538.

48 Shetron-Rama, L. M., H. Marquis, H. G. Bouwer, and N. E. Freitag. 2002. Intracellular induction of Listeria monocytogenes actA expression. Infect. Immun. 70:1087-1096.

49 Mounier, J., A. Ryter, M. Coquis-Rondon, and P. J. Sansonetti. 1990. Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect. Immun. 58:1048-1058.

50 Tilney, L. G., and D. A. Portnoy. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109:1597-1608.

51 Robbins, J. R., A. I. Barth, H. Marquis, E. L. de Hostos, W. J. Nelson, and J. A. Theriot. 1999. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell Biol. 146:1333-1350.

52 Gedde, M. M., D. E. Higgins, L. G. Til-ney, and D. A. Portnoy. 2000. Role oflis-teriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect. Immun. 68:999-1003.

E. Domann, W. Goebel, and T. Chakra-borty. 1990. Identification of a gene that positively regulates listeriolysin, the major virulence factor of Listeria monocytogenes. Proc. Natl. Acad. Sci. U. S. A. 87:8336-8340.

54 Kreft J, and J.-A. Vazquez-Boland. 2001. Regulation of virulence genes in Listeria. Int. J. Med. Microbiol. 291:145157.

55 Luo, Q., M. Herler, S. Müller-Altrock, and W. Goebel. 2005. Supportive and inhibitory elements of a putative PrfA-dependent promoter in Listeria monocy-togenes. Mol. Microbiol. 55:986-997.

56 Freitag, N. E. and D. A. Portnoy. 1994. Dual promoters of the Listeria monocyto-genes prfA transcriptional activator appear essential in vitro but are redundant in vivo. Mol. Microbiol. 12:845853.

57 Rauch, M., Q. Luo, S. Müller-Altrock, and W. Goebel. 2005. SigB-dependent in vitro transcription of prfA and some newly identified genes of Listeria monocytogenes whose expression is affected by PrfA in vivo. J. Bacteriol. 187:800-804.

58 Leimeister-Wächter, M., E. Domann, and T. Chakraborty. 1992. The expression of virulence genes in Listeria monocytogenes is thermoregulated. J. Bacter-iol. 174:947-952.

59 Johansson, J., P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer, and P. Cos-sart. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551-561.

P. Cossart. 1994. Five Listeria monocyto-genes genes preferentially expressed in infected mammalian cells: plcA, purH, purD, pyrE and an arginine ABC transporter gene arpJ. Mol. Microbiol. 13:585-597.

61 Dubail, I., P. Berche, and A. Charbit. 2000. Listeriolysin O as a reporter to identify constitutive and in vivo-induci-ble promoters in the pathogen Listeria monocytogenes. Infect. Immun. 68:32423250.

62 Gahan, C.G., and C. Hill. 2000. The use oflisteriolysin to identify in vivo induced genes in the gram-positive intracellular pathogen Listeria monocytogenes. Mol. Microbiol. 36:498-507.

63 Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, M. G. Bertero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier,

A. Brans, M. Braun, S. C. Brignell, S. Bron, S. Brouillet, C. V. Bruschi,

B. Caldwell, V. Capuano, N. M. Carter, S. K. Choi, J. J. Codani, I. F. Connerton, N. J. Cummings, R. A. Daniel, F. Deni-

D. Foulger, C. Fritz, M. Fujita, Y. Fujita, S. Fuma, A. Galizzi, N. Gallerton

B. J. Guy, K. Haga, J. Haiech, C. R. Har-wood, A. Henaut, H. Hilbert, S. Holsap-pel, S. Hosono, M.-F. Hullo, M. Itaya,

L. Jones, B. Joris, D. Karamata, Y. Kasa-hara, M. Klaerr-Blanchard, C. Klein, Y. Kobayashi, P. Koetter, G. Koningstein, S. Krogh, M. Kumano, K. Kurita, A. Lapi-dus, S. Lardinois, J. Lauber, V. Lazarevic, S.-M. Lee, A. Levine, H. Liu, S. Masuda,

R. P. Mellado, M. Mizuno, D. Moestl, S. Nakai, M. Noback, D. Noone, M. O'Reilly, K. Ogawa, A. Ogiwara, B. Oudega, S.-H. Park, V. Parro, T. M. Pohl, D. Portetelle, S. Porwollik,

B. Purnelle, G. Rapoport, M. Rey, S. Reynolds, M. Rieger, C. Rivolta, E. Rocha,

E. Scanlan, S. Schleich, R. Schroeter,

F. Scoffone, J. Sekiguchi, A. Sekowska, S. J. Seror, P. Serror, B.-S. Shin, B. Soldo, A. Sorokin, E. Tacconi, T. Takagi,

H. Takahashi, K. Takemaru, M. Takeu-chi, A. Tamakoshi, T. Tanaka, P. Terp-stra, A. Tognoni, V. Tosato, S. Uchiyama, M. Vandenbol, F. Vannier, A. Vassarotti, A. Viari, R. Wambutt, E. Wedler, H. Wedler, T. Weitzenegger, P. Winters, A. Wipat, H. Yamamoto, K. Yamane, K. Yasumoto, K. Yata, K. Yoshida, H.-F. Yoshikawa, E. Zumstein, H. Yoshi-kawa, and A. Danchin. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249-256.

64 Buchrieser, C., C. Rusniok, F. Kunst, P. Cossart, P. Glaser and the Listeria Consortium 2003. Comparison of the genome sequences of Listeria monocyto-genes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immunol. Med. Microbiol. 35:207-213.

65 Cabanes, D., P. Dehoux, O. Dussurget, L. Frangeul, and P. Cossart. 2002. Surface proteins and the pathogenic poten tial of Listeria monocytogenes. Trends Microbiol. 10:238-245.

66 Chico-Calero, I., M. Suarez, B. Gonzalez-Zorn, M. Scortti, J. Slaghuis,

W. Goebel, and J.-A. Vazquez-Boland. 2002. Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate trans-locase, mediates rapid intracellular proliferation in Listeria. Proc. Natl. Acad. Sci. USA 99:431-436.

67 Cole, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry 3rd, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. Oosborne

M. A. Quail, M.-A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K.Taylor, S. Whitehead, and B. G. Bar-rell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537-544.

68 Blattner, F. R., G. Plunkett III, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:14531462.

69 Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. West-brock-Wadman, Y. Yuan, L. L. Brody,

S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959-964.

70 Doumith, M., C. Cazalet, N. Simoes, L. Frangeul, C. Jacquet, F. Kunst,

P. Martin, P. Cossart, P. Glaser, and C. Buchrieser. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72:1072-1083.

71 Borezee, E., T., Msadek, L. Durant, and P. Berche. 2000. Identification in Listeria monocytogenes of MecA, a homologue of the Bacillus subtilis competence regulatory protein. J. Bacteriol. 182:5931-5934.

72 Kreft, J., M. Dumbsky, and S. Theiss. 1995. The actin-polymerization protein from Listeria ivanovii is a large repeat protein which shows only limited amino acid sequence homology to ActA from Listeria monocytogenes. FEMS Microbiol. Lett. 126:113-121.

73 Schmid, M. W., E. Y. Ng, R. Lampidis, M. Emmerth, M. Walcher, J. Kreft,

W. Goebel, M. Wagner, and K. H. Schleifer. 2005. Evolutionary history of the genus Listeria and its virulence genes. Syst. Appl. Microbiol. 28:1-18.

E. Domann. 2000. Genome organization and the evolution of the virulence gene locus in Listeria species. Int. J. Med. Microbiol. 290:167-174.

75 Ng, E. Y. W. 2001. How did Listeria monocytogenes become pathogenic? Dissertation, University of Würzburg, Würzburg, Germany.

76 Gouin, E., J. Mengaud, and P. Cossart. 1994. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a non-pathogenic species. Infect. Immun. 62:3550-3553.

S. Altrock, G. Dominguez-Bernal, and W. Goebel. 2002. Pathogenicity islands and other virulence elements in Listeria. Cur. Top. Microbiol. Immunol. 264:109-125.

78 Ward, T.J., L. Gorski, M. K. Borucki, R. E. Mandrell, J. Hutchins, and

K. Pupedis. 2004. Intraspecific phylo-geny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes. J. Bacteriol. 186:4994-5002.

79 Dramsi, S., P. Dehoux, M. Lebrun, P. L. Goossens, and P. Cossart. 1997. Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect. Immun. 65:1615-1625.

81 Reglier-Poupet, H., C. Frehel, I. Dubail, J. L. Beretti, P. Berche, A. Charbit,

C. Raynaud. 2003. Maturation of lipoproteins by type II signal peptidase is required for phagosomal escape of Listeria monocytogenes. J. Biol. Chem. 278:49469-49477.

82 Reglier-Poupet, H., E. Pellegrini,

A. Charbit, and P. Berche. 2003. Identification of LpeA, a PsaA-like membrane protein that promotes cell entry by Listeria monocytogenes. Infect. Immun. 71:474-482.

83 Cabanes, D., O. Dussurget, P. Dehoux, and P. Cossart. 2004. Auto, a surface associated autolysin of Listeria monocyto-genes required for entry into eukaryotic cells and virulence. Mol. Microbiol. 51:1601-1614.

84 Dramsi, S., F. Bourdichon, D. Cabanes, M. Lecuit, H. Fsihi, and P. Cossart. 2004. FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol. Microbiol. 53:639-649.

85 Portnoy, D. A., P. S. Jacks, and D. J. Hinrichs. 1988. Role of hemolysin for the intracellular growth of Listeria mono-cytogenes. J. Exp. Med. 167:1459-1471.

86 Marquis, H., H. G. Bouwer, D. J. Hinrichs, and D. A. Portnoy. 1993. Intracy-toplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect. Immun. 61:3756-3760.

87 Goetz, M., A. Bubert, G. Wang, I. Chico-Calero, J.-A. Vazquez-Boland, M. Beck, J. Slaghuis, A. A. Szalay, and W. Goebel. 2001. Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc. Natl. Acad. Sci. U. S. A. 98:12221-12226.

88 O'Riordan, M., M. A. Moors, and D. A. Portnoy. 2003. Listeria intracellular growth and virulence require host-derived lipoic acid. Science 302:462-464.

89 Slaghuis, J., M. Goetz, F. Engelbrecht, and W. Goebel. 2004. Inefficient replication of Listeria innocua in the cytosol of mammalian cells. J. Infect. Dis. 189:393-401.

90 Hardy, J., K. P. Francis, M. DeBoer, P. Chu, K. Gibbs, and C. H. Contag.

2004. Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303:851-853.

91 Dussurget, O., D. Cabanes, P. Dehoux, M. Lecuit, C. Buchrieser, P. Glaser, and P. Cossart; European Listeria Genome Consortium. 2002. Listeria monocytogenes bile salt hydrolase is a PrfA-regu-lated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45:1095-1106.

92 Begley, M., R. D. Sleator, C. G. Gahan, and C. Hill. 2005. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect. Immun. 73:894-904.

93 Sleator, R. D., H. H. Wemekamp-Kamp-huis, C. G. Gahan, T. Abee, and C. Hill.

2005. A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes. Mol. Microbiol. 55:1183-1195.

94 Cotter, P. D., N. Emerson, C. G. Gahan, and C. Hill. 1999. Identification and disruption of lisRK, a genetic locus encoding a two-component signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes. J. Bacteriol. 181:6840-6843.

95 Flanary, P. L., R. D. Allen, L. Dons, and S. Kathariou. 1999. Insertional inactiva-tion of the Listeria monocytogenes cheYA operon abolishes response to oxygen gradients and reduces the number of flagella. Can. J. Microbiol. 45:646-652.

P. Berche, and A. Charbit. 2003. Identification of the agr locus of Listeria mono-cytogenes: role in bacterial virulence. Infect. Immun. 71:4463-4471.

97 Kallipolitis, B. H., H. Ingmer, C. G. Gahan, C. Hill, and L. Sogaard-Ander-sen. 2003. CesRK, a two-component signal transduction system in Listeria monocytogenes, responds to the presence of cell wall-acting antibiotics and affects b-lactam resistance. Antimicrob. Agents Chemother. 47:3421-3429.

98 Williams, T., S. Bauer, D. Beier, and M. Kuhn. 2005. Construction and characterisation of Listeria monocytogenes mutants with in-frame deletions in the response regulator genes identified in the genome sequence. Infect. Immun. 73:3152-3159.

99 Knudsen, G. M., J. E. Olsen, and L. Dons. 2004. Characterization of DegU, a response regulator in Listeria monocytogenes, involved in regulation of motility and contributes to virulence. FEMS Microbiol. Lett. 240:171-179.

100 Raux, E., H. L. Schubert, M. J. Warren. 2000. Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Cell. Mol. Life Sci. 57:1880-1893.

101 Duche, O., F. Tremoulet, A. Namane, J. Labadie; European Listeria Genome Consortium. 2002. A proteomic analysis of the salt stress response of Listeria monocytogenes. FEMS Microbiol. Lett. 215:183-188.

102 Phan-Thanh, L. 2002. Proteomic analysis ofresponse to acid in Listeria mono-cytogenes. Methods Enzymol. 358:256276.

103 Wemekamp-Kamphuis, H. H., J. A. Wouters, P. P. de Leeuw, T. Hain,

T. Chakraborty, and T. Abee. 2004. Identification of sigma factor sigma B-con-trolled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl. Environ. Microbiol. 70:3457-3466.

104 Helloin, E., L. Jansch, L. Phan-Thanh. 2003. Carbon starvation survival of Listeria monocytogenes in planktonic state and in biofilm: a proteomic study. Pro-teomics 3:2052-2064.

105 Weeks, M. E, D. C. James, G. K. Robinson, and C. M. Smales. 2004. Global changes in gene expression observed at the transition from growth to stationary phase in Listeria monocytogenes ScottA batch culture. Proteomics 4:123-135.

106 Folio, P., P. Chavant, I. Chafsey, A. Belkorchia, C. Chambon, and

M. Hebraud. 2004. Two-dimensional electrophoresis database of Listeria monocytogenes EGDe proteome and proteomic analysis of mid-log and stationary growth phase cells. Proteomics 4:3187-3201.

107 Ramnath, M., K. B. Rechinger, L. Jansch, J. W. Hastings, S. Knochel, and

A. Gravesen. 2003. Development of a Listeria monocytogenes EGDe partial pro-

teome reference map and comparison with the protein profiles of food isolates. Appl. Environ. Microbiol. 69:3368-3376.

108 Schaumburg, J., O. Diekmann,

P. Hagendorff, S. Bergmann, M. Rohde, S. Hammerschmidt, L. Jansch, J. Wehland, and U. Karst. 2004. The cell wall subproteome of Listeria monocytogenes. Proteomics 4:2991-3006.

109 Calvo, E., M. G. Pucciarelli, H. Bierne, P. Cossart, J. Pablo Albar, and F. Garcia del Portillo. 2005. Analysis of the Listeria cell wall proteome by two-dimensional nanoliquid chromatography coupled to mass spectrometry. Proteomics 5:433-443.

110 Williams, T., B. Joseph, D. Beier, W. Goebel, and M. Kuhn. 2005. Response regulator DegU of Listeria monocytogenes regulate the expression of flagella-specific genes. FEMS Microbiol. Lett. DOI: 10.1016/j.femsle.2005.09.011

111 Dramsi, S., C. Kocks, C. Forestier, and P. Cossart. 1993. Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator prfA. Mol. Microbiol. 9:931-941.

112 Milohanic, E., P. Glaser, J. Y. Coppee, L. Frangeul, Y. Vega, J.-A. Vazquez-Boland, F. Kunst F, P. Cossart, and C. Buchrieser. 2003. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol. 47:1613-1625.

113 Rea, R. B., C. G. Gahan, and C. Hill. 2004. Disruption of putative regulatory loci in Listeria monocytogenes demon strates a significant role for Fur and PerR in virulence. Infect. Immun. 72:717-727.

P. Glaser, A. Namane, M. Hebraud, and Y. Hechard. 2004. Global analysis of gene expression in an rpoN mutant of Listeria monocytogenes. Microbiology 150:1581-1590.

115 Kazmierczak, M. J., S. C. Mithoe, K. J. Boor, and M. Wiedmann. 2003. Listeria monocytogenes sigma B regulates stress response and virulence functions.

J. Bacteriol. 185:5722-5734.

S. C. Smole, and F. Pagotto. 2004. Selective discrimination of Listeria monocyto-genes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilo-cus sequence typing. J. Clin. Microbiol. 42:5270-5276.

117 Borucki, M. K., M. J. Krug, W. T. Mur-aoka, and D. R. Call. 2003. Discrimination among Listeria monocytogenes isolates using a mixed genome DNA microarray. Vet. Microbiol. 92:351-362.

118 Call, D. R., M. K. Borucki, and T. E. Besser. 2003. Mixed-genome microarrays reveal multiple serotype and lineage-specific differences among strains of Listeria monocytogenes. J. Clin. Microbiol. 41:632-639.

119 Call, D. R., M. K. Borucki, and F. J. Loge. 2003. Detection of bacterial pathogens in environmental samples using DNA microarrays. J. Microbiol. Methods 53:235-243.

0 0

Post a comment