References

Chemo Secrets From a Breast Cancer Survivor

Breast Cancer Survivors

Get Instant Access

1. Pui CH. Childhood leukaemias. N Engl J Med. 1995;332:1618-1630.

2. Pui CH, Evans WE. Acute lymphoblastic leukaemias. N Engl J Med. 1998;339:605-615.

3. Campana D, Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry [review]. Cytometry. 1999;38: 139-152.

4. Neale GA, Coustan-Smith E, Pan Q, et al. Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 1999;13:1221-1226.

5. Yeoh EJ, Roos ME, Shurtleff AS, et al. Classification, subtype discovery, and prediction outcome in pediatric acute lymphoblastic leukemia by gene expression profile. Cancer Cell. 2002;1:133-143.

6. Pui CH, Behm FG, Crist WM. Clinical and biological relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood. 1993;82:343-362.

7. Rabbitts TH. Chromosomal translocations in human cancer. Nature. 1994;372:143-149.

8. Cline MJ. The molecular basis of leukaemia. N Engl J Med. 1994;330:328-336.

9. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302:575-581.

10. Van Dongen JJM, Wolvers-Tettero ILM. Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta. 1991;198:1-92.

11. Schwartz RS. Jumping genes and the immunoglobulin V gene system. N Engl J Med. Cambridge, UK, 1995;333:42-44.

12. Van Dongen JJM, Langerak AW. Immunoglobulin and T-cell receptor rearrangements. In: Pui CH, ed. Childhood Leukemias. Cambridge University Press, Cambridge, UK, 1999:145-167.

13. Potter MN, Steward CG, Oakhill A. The significance of detection of minimal residual disease in childhood acute lymphoblastic leukemia. Br J Haematol. 1993;83:412-418.

14. Van Dongen JJM, Szczepanski T, De Bruijn MAC, et al. Detection of minimal residual disease in acute leukemia patients. Cytokines Cell Mol Ther. 1996;2:121-133.

15. Yano T, Pullman A, Andade R, et al. A common Vd2-Dd2-Dd3 T cell receptor gene rearrangement in precursor B acute lymphoblastic leukemia. Br J Haematol. 1991;79:44-49.

16. Brisco MJ, Tan LW, Orsborn AM, Morley AA. Development of a highly sensitive assay, based on the polymerase chain reaction, for rare B-lymphocyte clones in a polyclonal population. Br J Haematol. 1990;75:163-167.

17. Scrideli CA, Simoes AL, Defavery R, Bernardes JE, Duarte MH, Tone LG. Childhood B lineage acute lymphoblastic leukemia clonality study by the polymerase chain reaction. J Pediatr Hematol Oncol. 1997;19:516-522.

18. Pongers-Willemse MJ, Seriu T, Stolz F, et al. Primers and protocols for standardized MRD detection in ALL using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets. Report of the BIOMED-1 Concerted Action: Investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:110-118.

19. Van Dongen JJM, Wolvers-Tettero ILM. Analysis of immunoglobulin and T cell receptor genes. Part II: possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta. 1991;198:93-174.

20. Szczepanski T, Beishuizen A, Pongers-Willemse MJ, et al. Cross-lineage T-cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B-acute lymphoblastic leukaemias: alternative PCR targets for detection of minimal residual disease. Leukemia. 1999;13:196-205.

21. Tkachuck DC, Griesser H, Takirara Y, et al. Rearrangement of T-cell delta locus in lymphoproliferative disorders. Blood. 1988;72:353-357.

22. Biondi A, Francia de Celli P, Rossi V, et al. High prevalence of T-cell receptor V delta 2-(D)-D delta 3 or D delta 1/2-D delta 3 rearrangements in B-precursor acute lymphoblastic leukemias. Blood. 1990;75:1834-1840.

23. Trainor KJ, Brisco MJ, Wan JH, et al. Gene rearrangement in B- and T-lymphoproliferative disease detected by the polymerase chain reaction. Blood. 1991;78:192-196.

24. Campana D, Pui CH. Detection of minimal residual disease in acute leukaemia: methodological and clinical significance. Blood. 1995;85: 1416-1434.

25. Ghali DW, Panzer S, Fischer S, et al. Heterogeneity of the T cell receptor delta gene indicating subclone formation in acute precursor B cell leukemias. Blood. 1995;85:2795-2801.

26. Szczepanki T, LangeraK AW, Wolvers-Tettero IL, et al. Immunoglob-ulin and T cell receptor gene rearrangement patterns in acute lym-phoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease. Leukemia. 1998;12:1081-1088.

27. Szczepanski T, van der Velden VH, Hoogeveen PG, et al. Vdelta2-Jalpha rearrangements are frequent in precursor-B-acute lym-

phoblastic leukemia but rare in normal lymphoid cells. Blood. 2004;103:3798-3804.

28. Foroni L, Harrison CJ, Hoffbrand AV, Potter MN. Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukaemia by molecular analysis. Br J Haematol. 1999;105:7-24.

29. Yin JA, Tobal K. Detection of minimal residual disease in acute myeloid leukaemia: methodologies, clinical and biological significance. Br J Haematol. 1999;106:578-590.

30. Look AT. Oncogenic transcription factors in the human acute leukaemias. Science. 1997;278:1059-1064.

31. Biondi A, Cimino G, Pieters R, Pui CH. Biological and therapeutic aspects of infant leukemia. Blood. 2000;96:24-33.

32. Cazzaniga G, Rossi V, Biondi A. Monitoring minimal residual disease using chromosomal translocations in childhood ALL. Best Pract Res Clin Haematol. 2002;15:21-35.

33. Hunger SP. Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood. 1996;87:1211-1224.

34. Privitera E, Luciano A, Ronchetti D, et al. Molecular variants of the 1;19 chromosomal translocation in pediatric acute lymphoblastic leukemia (ALL). Leukemia. 1994;8:554-559.

35. Cazzaniga G, Lanciotti M, Rossi V, et al. Prospective molecular monitoring of BCR/ABL transcript in children with Ph+ acute lym-phoblastic leukaemia unravels differences in treatment response. Br J Haematol. 2002;119:445-453.

36. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343-3356.

37. Scrideli CA, Cazzaniga G, Fazio G, et al. Gene expression profile unravels significant differences between childhood and adult Ph+ acute lymphoblastic leukemia. Leukemia. 2003;17:2234-2237.

38. Schrappe M, Arico M, Harbott J, et al. Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood. 1998;92:2730-2741.

39. Borkhardt A, Cazzaniga G, Viehmann S, et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lym-phoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Associazione Italiana Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Munster Study Group. Blood. 1997;90:571-577.

40. Raynaud S, Mauvieux L, Cayuela JM, et al. TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia. 1996;10:1529-1530.

41. Seeger K, Adams HP, Buchwald D, et al. TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The BerlinFrankfurt-Munster Study Group. Blood. 1998;91:1716-1722.

42. Basso K, Frascella E, Zanesco L, Rosolen A. Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt's lymphomas. Am J Pathol. 1999;155:1479-1485.

43. van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:1901-1928.

44. Cave H, van der Werff Ten Bosch J, Suciu S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. N Engl J Med. 1998;339:591-598.

45. Biondi A, Valsecchi MG, Seriu T, et al. Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM Study Group. Leukemia. 2000;14:1939-1943.

46. Van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352:1731-1738.

47. Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of "real-time" quantitative reverse transcrip-tase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia. 2003;17:2318-2357.

48. Scrideli CA, Kashima S, Cipolloti R, Defavery R, Bernardes JE, Tone LG. Minimal residual disease in Brazilian children with acute lym-phoid leukemia: comparison of three detection methods by PCR. Leuk Res. 2002;26:431-438.

49. Scrideli CA, Queiroz RG, Bernardes JE, Valera ET, Tone LG. PCR detection of clonal IgH and TCR gene rearrangements at the end of induction as a non-remission criterion in children with ALL: comparison with standard morphologic analysis and risk group classification. Med Pediatr Oncol. 2003;41:10-16.

50. Knechtli CJ, Goulden NJ, Hancock JP, et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood. 1998;92:4072-4079.

51. Knechtli CJ, Goulden NJ, Hancock JP, et al. Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia. Br J Haematol. 1998;102:860-871.

52. Fardel S, Kurzrock R, Estrov Z. Minimal residual disease in hemato-logic disorders. Arch Pathol Lab Med. 1999;123:1030-1034.

53. Sklar J. Polymerase chain reaction: the molecular microscope of residual disease. J Clin Oncol. 1991;1:1521-1523.

54. Cross NC. Quantitative PCR techniques and applications. Br J Haematol. 1995;89:693-697.

55. Cazzaniga G, Biondi A. Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. Haematologica. 2005;90:382-390.

56. Verhagen OJ, Willemse MJ, Breunis WB, et al. Application of germline IgH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia. 2000;14:1426-1435.

57. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia. 1998;12:2006-2014.

58. Germano G, Rossi V, Poli A, et al. Use of T-cell receptor g germline "TaqMan" probes for the analysis of minimal residual disease in childhood T-ALL by Real-Time Quantitative PCR. Blood. 1999;94: 204b.

59. Willems P, Verhagen O, Segeren C, et al. Consensus strategy to quan-titate malignant cells in myeloma patients is validated in a multicenter study. Belgium-Dutch Hematology-Oncology Group. Blood. 2000;96:63-70.

60. Eckert C, Scrideli CA, Taube T, et al. Comparison between TaqMan and LightCycler technologies for quantification of minimal residual disease by using immunoglobulin and T-cell receptor genes consensus probes. Leukemia. 2003;17:2517-2524.

61. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17:1013-1034.

62. Hochhaus A, Weisser A, La Rosee P, et al. Detection and quantification of residual disease in chronic myelogenous leukaemia. Leukemia. 2000;14:998-1005.

63. Pallisgaard N, Clausen N, Schroder H, Hokland P. Rapid and sensitive minimal residual disease detection in acute leukaemia by quantitative real-time RT-PCR exemplified by t(12;21) TEL-AML1 fusion transcript. Genes Chromosomes Cancer. 1999;26:355-365.

64. Krauter J,Wattjes MP, Nagel S, et al. Real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21)-positive AML patients. Br J Haematol. 1999;107:80-85.

65. Beillard E, Pallisgaard N,van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using "real-time" quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe Against Cancer program. Leukemia. 2003;17:2474-2486.

66. Guidal C, Vilmer E, Grandchamp B, Cave H. A competitive PCR-based method using TCRD, TCRG and IGH rearrangements for rapid detection of patients with high levels of minimal residual disease in acute lymphoblastic leukemia. Leukemia. 2002;16:762-764.

67. Landman-Parker J, Aubin J, Delabesse E, et al. Simplified strategies for minimal residual disease detection in B cell precursor acute lym-phoblastic leukaemia. Br J Haematol. 1996;95:281-290.

68. Evans PA, Short MA, Owen RG, et al. Residual disease detection using fluorescent polymerase chain reaction at 20 weeks of therapy predicts clinical outcome in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998;16:3616-3627.

69. Bottaro M, Berti E, Biondi A, et al. Heteroduplex analysis of T-cell receptor gamma gene rearrangements for diagnosis and monitoring of cutaneous T-cell lymphomas. Blood. 1994;83:3271-3278.

70. Germano G, Songia S, Biondi A, Basso G. Rapid detection of clonal-ity in patients with acute lymphoblastic leukemia. Haematologica. 2001;86:382-385.

71. Kitchingman GR, Mirro J, Stass S, et al. Biologic and prognostic significance of the presence of more than two mu heavy-chain genes in childhood acute lymphoblastic leukemia of B precursor cell origin. Blood. 1986;67:698-703.

72. Kuang S, Gu L, Dong S, et al. Long-term follow-up of minimal residual disease in childhood acute lymphoblastic leukemia patients by polymerase chain reaction analysis of multiple clone-specific or malignancy-specific gene markers. Cancer Genet Cytogenet. 1996;88:110-117.

73. Green E, McConville CM, Powell JE, et al. Clonal diversity of Ig and T-cell-receptor gene rearrangements identifies a subset of childhood B-precursor acute lymphoblastic leukemia with increased risk of relapse. Blood. 1998;92:952-958.

74. Scrideli CA, Defavery R, Bernardes JE, Tone LG. Prognostic significance of bi/oligoclonality in childhood acute lymphoblastic leukemia as determined by polymerase chain reaction. Sao Paulo Med J. 2001;119:175-180.

75. Brumpt C, Delabesse E, Beldjord K, et al. The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lym-phoblastic leukemia varies with age and genotype. Blood. 2000;96:2254-2261.

76. Hara J, Benedict SH, Yumura K, Ha-Kawa K, Gelfand EW. Rearrangement of variable region T cell receptor y genes in acute lymphoblastic leukemia. Vy gene usage differs in mature and immature T cells. J Clin Invest. 1999;83:1277-1283.

77. Beishuizen A, Verhoeven MA, Van Wering ER, et al. Analysis of Ig and T cell receptor genes in 40 childhood acute lymphoblastic leukemia at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood. 1994;83:2238-2247.

78. Steward CG, Goulden NJ, Katz F, et al. A polymerase chain reaction study of the stability of Ig heavy-chain and T cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood. 1994;83:1355-1362.

79. Scrideli CA, Queiroz RG, Kashima S, Sankarankutty BO, Tone LG. T cell receptor gamma (TCRG) gene rearrangements in Brazilian children with acute lymphoblastic leukemia: analysis and implications for the study of minimal residual disease. Leuk Res. 2004;28:267-273.

80. Campana D, Van Dongen JJM, Pui CH. Minimal residual disease. In: Pui CH, ed. Childhood Leukemias. Cambridge University Press, Cambridge, UK, 1999:413-442.

81. Marshall GM, Kwan E, Haber M, et al. Characterization of clonal immunoglobulin heavy chain and I cell receptor gamma gene rearrangements during progression of childhood acute lym-phoblastic leukemia. Leukemia. 1995;9:1847-1850.

82. Scrideli CA, Kashima S, Cipolloti R,Defavery R, Tone LG. Clonal evolution as the limiting factor in the detection of minimal residual disease by polymerase chain reaction in children in Brazil with acute lymphoid leukemia. J Pediatr Hematol Oncol. 2002;24:364-367.

83. Steenbergen EJ,Verhagen OJ,Van Leeuwen EF, et al. Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood. 1993;82:581-589.

84. Lo Nigro L, Cazzaniga G, Di Cataldo A, et al. Clonal stability in children with acute lymphoblastic leukemia (ALL) who relapsed five or more years after diagnosis. Leukemia. 1999;13:190-195.

85. Choi Y, Greenberg SJ, Du TL, Ward PM, et al. Clonal evolution in B-lineage acute lymphoblastic leukemia by contemporaneous VH-VH gene replacements and VH-DJH gene rearrangements. Blood. 1996;87:2506-2512.

86. Height SE, Swanbury GJ, Matute E, et al. Analysis of clonal rearrangements of the Ig heavy chain locus in acute leukemia. Blood. 1996;87: 5242-5250.

87. Bose S, Deininger M, Gora-Tybor J, et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood. 1998;92:3362-3367.

88. Uckun FM, Herman-Hatten K, Crotty ML, et al. Clinical significance of MLL-AF4 fusion transcript expression in the absence of a cyto-genetically detectable t(4;11)(q21;q23) chromosomal translocation. Blood. 1998;92:810-821.

89. Germano G, Songia S, Biondi A, Basso G. Rapid detection of clonal-ity in patients with acute lymphoblastic leukemia. Haematologica. 2001;86:382-385.

90. Szczepanski T, Orfao A, van der Velden VH, San Miguel JF, van Dongen JJ. Minimal residual disease in leukaemia patients. Lancet Oncol. 2001;2:409-417.

91. Cimino G, Elia L, Rapanotti MC, et al. A prospective study of residual-disease monitoring of the ALL1/AF4 transcript in patients with t(4;11) acute lymphoblastic leukemia. Blood. 2000;95:96-101.

92. Zuna J, Hrusak O, Kalinova M, Muzikova K, Stary J, Trka J. Significantly lower relapse rate for TEL/AML1-positive ALL. Leukemia. 1999;13:1633.

93. Kerst G, Kreyenberg H, Roth C, et al. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol. 2005;128:774-782.

94. Laughton SJ, Ashton LJ, Kwan E, Norris MD, Haber M, Marshall GM. Early responses to chemotherapy of normal and malignant hemato-logic cells are prognostic in children with acute lymphoblastic leukemia. J Clin Oncol. 2005;23:2264-2271.

95. Neale GA, Coustan-Smith E, Stow P, et al. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2004;18:934-938.

96. Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood. 2000;95:790-794.

97. Coustan-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood. 2002;100:52-58.

98. Taube T, Eckert C, Korner G, Henze G, Seeger K. Real-time quantification of TEL-AML1 fusion transcripts for MRD detection in relapsed childhood acute lymphoblastic leukaemia. Comparison with antigen receptor-based MRD quantification methods. Leuk Res. 2004;28:699-706.

99. Bruggemann M, van der Velden VH, Raff T, et al. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia. 2004;18:709-719.

Was this article helpful?

0 0
10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook


Post a comment