References

1. Aertsen, A. and Michiels, C.W., Stress and how bacteria cope with death and survival, Crit. Rev. Microbiol., 30, 263, 2004.

2. Vorob'eva, L.I., Stressors, stress reactions, and survival of bacteria: a review, Appl. Biochem. Microbiol., 40, 261, 2004.

3. Yousef, A.E. and Courtney, P.D., Basics of stress adaptation and implications in new-generation foods, in Microbial Stress Adaptation and Food Safety, Yousef, A.E. and Juneja, V.K., Eds., CRC Press, Boca Raton, FL, 2003, chap. 1.

4. Beales, N., Adaptation of microorganisms to cold temperatures, weak acid-preservatives, low pH, and osmotic stress: a review, Comp. Rev. Food Sci. Food Saf., 3, 1, 2004.

5. Lombardo, M-J., Aponyi, I., and Rosenberg, S., General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli, Genetics, 166, 669, 2004.

6. Sonenshein, A.L., Bacterial sporulation: a response to environmental signals, in Bacterial Stress Responses, Storz, G. and Hengge-Aronis, R., Eds., American Society for Microbiology, Washington D.C., 2000, p. 199.

7. Voyich, J.M. et al., Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes, PNAS, 100, 1996, 2003.

8. De Angelis, M, and Gobbetti, M., Environmental stress responses in Lactobacillus: a review, Proteomics, 4, 106, 2004.

9. Sanders, J.W., Venema, G., and Kok, J., Environmental stress responses in Lactococcus lactis, FEMS Microbiol. Rev., 23, 483, 1999.

10. Hecker, M., Schumann, W., and Volker, U., Heat-shock and general stress response in Bacillus subtilis, Mol. Microbiol., 19, 417, 1996.

11. Juneja, V.K. and Novak, J.S., Adaptation of foodborne pathogens to stress from exposure to physical intervention strategies, in Microbial Stress Adaptation and Food Safety, Yousef, A.E. and Juneja, V.K., Eds., CRC Press, Boca Raton, FL, 2003, chap. 2.

12. Pichereau, V., Hartke, A., and Auffray, Y., Starvation and osmotic stress induced multiresistances, influence of extracellular compounds, Int. J. Food Microbiol., 55, 19, 2000.

13. Hengge-Aronis, R., Interplay of global regulators and cell physiology in the general stress response of Escherichia coli, Curr. Opin. Microbiol., 2, 148, 1999.

14. Price, C.W., Protective function and regulation of the general stress response in Bacillus subtilis and related gram-positive bacteria, in Bacterial Stress Responses, Storz, G. and Hengge-Aronis, R., Eds., American Society for Microbiology, Washington D.C., 2000, p. 179.

15. Abee, T. and Wouters, J.A., Microbial stress response in minimal processing, Int. J. Food Microbiol., 50, 65, 1999.

16. Hengge-Aronis, R., The general stress response in Escherichia coli, in Bacterial Stress Responses, Storz, G., and Hengge-Aronis, R., Eds., American Society for Microbiology, Washington D.C., 2000, p. 161.

17. Komitopoulou, E., Bainton, N.J., and Adams, M.R., Oxidation-reduction potential regulates RpoS levels in Salmonella, J. Appl. Microbiol., 96, 271, 2004.

18. Venturi, V., Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different?, Mol. Microbiol., 49, 1, 2003.

19. Ihssen, J. and Egli, T., Specific growth rate and not cell density controls the general stress response in Escherichia coli, Microbiology, 150, 1637, 2004.

20. Schweder, T. and Hecker, M., Monitoring of stress responses, Adv. Biochem. Eng. Biotechnol., 89, 47, 2004.

Farewell, A., Kvint, K., and Nyström, T., uspB, a new sigma S-regulated gene in Escherichia coli which is required for stationary phase resistance to ethanol, J. Bacteriol, 180, 6140, 1998.

Hengge-Aronis, R., Regulation of gene expression during entry into stationary phase, in Escherichia coli and Salmonella, Neidhardt, F.C., Ed., American

Society for Microbiology, Washington D.C., 1996, p. 1497.

Beuchat, L.R., Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables, Micr. Infect., 4, 413, 2002.

Beuchat, L.R. and Ryu, J.-H., Produce handling and processing practices,

Guan, T.Y. et al., Fate of foodborne bacterial pathogens in pesticidal products, J. Sci. FoodAgric., 81, 503, 2001.

Harris, L.J. et al., Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens in fresh and fresh-cut produce, Comp. Rev. Food Sci. Food Saf, 2, 78, 2003.

Islam, M. et al., Fate of Escherichia coli O157:H7 in manure compost-amended soil and on carrots and onions grown in an environmentally controlled growth chamber, J. Food Prot., 67, 574, 2004.

Winfield, M.D. and Groisman, E.A., Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli, Appl. Environ. Microbiol., 69, 3687, 2003.

Brandl, M.T. and Mandrell, R.E., Fitness of Salmonella enterica serovar Thompson in the cilantro phyllosphere, Appl. Environ. Microbiol., 68, 3614, 2002.

Miche, L. et al., Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors, Environ. Microbiol., 5, 403, 2003.

Russell, A.D., Lethal effects of heat on bacterial physiology and structure, Sci. Prog., 86, 115, 2003.

Krüger, E.D. et al., Clp-mediated proteolysis in gram-positive bacteria is autoregulated by the stability of a repressor, EMBO J., 20, 852, 2001. Rosen, R. and Ron, E.Z., Proteome analysis in the study of the bacterial heat-shock response, Mass Spect. Rev., 21, 244, 2002.

Alba, B.M. and Gross, C.A., Regulation of the Escherichia coli aE-dependent envelope stress response, Mol. Microbiol., 52, 613, 2004.

Raivio, T.L. and Silhavy, T.J., Sensing and responding to envelope stress, in Bacterial Stress Responses, Storz, G. and Hengge-Aronis, R., Eds., American Society for Microbiology, Washington D.C., 2000, p. 19. Ramos, J.L. et al., Responses of Gram-negative bacteria to certain environmental stressors, Curr. Opin. Microbiol., 4, 166, 2001.

Wawrzynow, A.B. et al., ATP hydrolysis is required for the DnaJ-dependent activation of DnaK chaperone for binding to both native and denatured protein substrates, J. Biol. Chem, 270, 19307, 1995.

Seyer, K.M. et al., Escherichia coli heat shock protein DnaK: production and consequences in terms of monitoring cooking, Appl. Environ. Microbiol., 69, 3231, 2003.

Lou, Y. and Yousef, A.E., Adaptation of sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors, Appl. Environ. Microbiol., 63, 1252, 1997.

40. Lin, Y. and Chou, C., Effect of heat shock on thermal tolerance and susceptibility of Listeria monocytogenes to other environmental stresses, Food Microbiol., 21, 605, 2004.

41. Bintsis, T., Litopoulu-Tzanetaki, E., and Robinson, R.K., Existing and potential applications of ultraviolet light in the food industry: a critical review, J. Sci. Food Agric., 80, 637, 2000.

42. Dantur, K.I. and Pizarro, R.A., Effect of growth phase on the Escherichia coli response to ultraviolet-A radiation: influence of conditioned media, hydrogen peroxide and acetate, J. Photochem. Photobiol. B: Biol., 75, 33, 2004.

43. Favre, A. et al., Mutagenesis and growth delay induced in Escherichia coli by near ultraviolet radiation, Biochimie, 67, 335 1985.

44. Blatchley, E.R., III and Peel, M.M., Disinfection by ultraviolet irradiation, in Disinfection, Sterilization and Preservation, Block, S.S., Ed., Lippincott Williams and Wilkins, Philadelphia, 2001, p. 823.

45. Rodriguez-Romo, L.A. and Yousef, A.E., Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by ozone and ultraviolet radiation, J. Food Prot., 68, 711, 2005.

46. Lado, B.H. and Yousef, A.E., Alternative food-preservation technologies: efficacy and mechanisms, Micr. Infect., 4, 433, 2002.

47. Rowbury, R.J., UV radiation-induced enterobacterial responses, other processes that influence UV tolerance and likely environmental significance, Sci. Prog., 86, 313, 2003.

48. Hartke, A. et al., UV-inducible proteins and UV-induced cross-protection against acid, ethanol, H2O2 or heat treatments in Lactococcus lactis subsp. lactis, Arch. Microbiol., 163, 329, 1995.

49. Walker, G.C., Smith, B.T., and Sutton, M.D., The SOS response to DNA damage, in Bacterial Stress Responses, Storz, G. and Hengge-Aronis, R., Eds., American Society for Microbiology, Washington D.C., 2000, p. 131.

50. Van de Guchte, M. et al., Stress responses in lactic acid bacteria, Antonie van Leeuwenhoek, 82, 187, 2002.

51. Browne, N. and Dowds, B.C.A., Heat and salt stress in the food pathogen Bacillus cereus, J. Appl. Microbiol., 91, 1085, 2001.

52. Browne, N. and Dowds, B.C.A., Acid stress in the food pathogen Bacillus cereus, J. Appl. Microbiol., 92, 404, 2002.

53. Periago, P.M. et al., Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579, Appl. Environ. Microbiol., 68, 3486, 2002.

54. Faleiro, M.L., Andrew, P.W., and Power, D., Stress response of Listeria monocytogenes isolated from cheese and other foods, Int. J. Food Microbiol., 84, 207, 2003.

55. Janisiewicz, W.J. et al., Fate of Escherichia coli O157:H7 on fresh-cut apple tissue and its potential for transmission by fruit flies, Appl. Environ. Microbiol., 65, 1, 1999.

56. Michaels, B. et al., Prevention of food worker transmission of foodborne pathogens: risk assessment and evaluation of effective hygiene intervention strategies, Food Serv. Technol., 4, 31, 2004.

57. Zagory, D., Effects of post-processing handling and packaging on microbial populations, Postharvest Bio. Technol., 15, 313, 1999.

58. Broadbent, J.R. and Lin, C., Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization, Cryobiology, 39, 88, 1999.

59. Garcia, S., Limon, J.C., and Heredia, N.L., Cross protection by heat and cold shock to lethal temperatures in Clostridium perfringens, Braz. J. Microbiol., 32, 110, 2001.

60. Bollman, J., Ismond, A., and Blank, G., Survival of Escherichia coli O157:H7 in frozen foods: impact of the cold shock response, Int. J. Food Microbiol., 64, 127, 2001.

61. Phadtare, S., Yamanaka, K., and Inouye, M., The cold shock response, in Bacterial Stress Responses, Storz, G. and Hengge-Aronis, R., Eds., American Society for Microbiology, Washington D.C., 2000, p. 33.

62. Russell, N.J., Bacterial membranes: the effects of chill storage and food processing. An overview, Int. J. Food Microbiol., 79, 27, 2002.

63. Graumann, P. and Marahiel, M.A., Some like it cold: response of microorganisms to cold shock, Arch. Microbiol., 166, 293, 1996.

64. Panoff, J.-M. et al., Cold stress responses in mesophilic bacteria, Cryobiology, 36, 75, 1998.

65. Inouye, M. and Phadtare, S., Cold shock response and adaptation at near-freezing temperature in microorganisms, Science's STKE [serial online]. Available at: http://www.stke.org/cgl/content/full/sigtrans;2004/237/pe26.

66. Ermolenko, D.N. and Makhatadze, G.I., Bacterial cold-shock proteins, Cell. Mol. Life Sci., 59, 1902, 2002.

67. Bayles, D.O. et al., Cold shock and its effect on ribosomes and thermal tolerance in Listeria monocytogenes, Appl. Environ. Microbiol., 66, 4351, 2000.

68. Miller, A.J., Bayles, D.O., and Eblen, B.S., Cold shock induction of thermal sensitivity in Listeria monocytogenes, Appl. Environ. Microbiol., 66, 4345, 2000.

69. Lin, C., Yu, R.-C., and Chou, C.-C., Susceptibility of Vibrio parahaemolyticus to various environmental stresses after cold shock treatment, Int. J. Food Microbiol., 92, 207, 2004.

70. Sharma, M., Taormina, P.J., and Beuchat, L.R., Habituation of foodborne pathogens exposed to extreme pH conditions: genetic basis and implications in foods and food processing environments, Food Sci. Technol. Res., 9, 115, 2003.

71. Foster, J.W., Microbial responses to acid stress, in Bacterial Stress Responses, Storz, G. and Hengge-Aronis, R., Eds., American Society for Microbiology, Washington D.C., 2000, p. 99.

72. Wong, H.-C. et al., Effect of mild acid treatment on the survival, enteropathogenicity, and protein production in Vibrio parahaemolyticus, Infect. Immun, 66, 3066, 1998.

73. Rowe, M.T. and Kirk, R.B., Cross-protection phenomenon in Escherichia coli strains harbouring cytotoxic necrotizing factors and cytolethal distending toxins, Lett. Appl. Microbiol., 32, 67, 2001.

74. Tosun, H. and Gonul, A., Acid adaptation protects Salmonella typhimurium from environmental stresses, Turk. J. Biol., 27, 31, 2003.

75. Ryu, J.-H. and Beuchat, L.R., Influence of acid tolerance responses on survival, growth, and thermal cross-protection of Escherichia coli O157:H7 in acidified media and fruit juices, Int. J. Food Microbiol., 45, 185, 1998.

76. Bacon, R.T. et al., Thermal inactivation of susceptible and multiantimicrobial-resistant Salmonella strains grown in the absence or presence of glucose, Appl. Environ. Microbiol., 69, 4123, 2003.

77. Koutsoumanis, K.P., Kendall, P.A., and Sofos, J.N., Effect of food processing-related stresses on acid tolerance of Listeria monocytogenes, Appl. Environ. Microbiol., 69, 7514, 2003.

78. De Spiegeleer, P. et al., Source of tryptone in growth medium affects oxidative stress resistance in Escherichia coli, J. Appl. Microbiol., 97, 124, 2004.

79. Lu, C., Bentley, W.E. and Rao, G., Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations, Biotech. Bioeng., 83, 864, 2003.

80. Storz, G. and Zheng, M., Oxidative stress, in Bacterial Stress Responses, Storz, G. and Hengge-Aronis, R., Eds., American Society for Microbiology, Washington D.C., 2000, p. 47.

81. Lushchack, V.I., Oxidative stress and mechanisms of protection against it in bacteria, Biochemistry, 66, 476, 2001.

82. Ritz, D. et al., Thioredoxin 2 is involved in the oxidative stress response in Escherichia coli, J. Biol. Chem., 275, 2505, 2000.

83. Cabiscol, E., Tamarit, J., and Ros, J., Oxidative stress in bacteria and protein damage by reactive oxygen species, Int. Microbiol., 3, 3, 2000.

84. Tkachenko, A.G. and Nesterova, Yu.L., Polyamines as modulators of gene expression under oxidative stress in Escherichia coli, Biochemistry, 68, 850, 2003.

85. Chen, J., Lee, S.M., and Mao, Y., Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress, Int. J. Food Microbiol., 93, 281, 2004.

86. Van der Straaten, T. et al., Salmonella enterica serovar Typhimurium RamA, intracellular oxidative stress response, and bacterial virulence, Infect. Immun., 72, 996, 2004.

87. Alzamora, S.M., Lopez-Malo, A., and Tapia, M.S., Overview, in Minimally Processed Fruits and Vegetables, Alzamora, S.M., Tapia, M.S., and Lopez-Malo, A., Eds., Aspen Publishers, Gaithersburg, MD, 2000, p. 1.

88. Leistner, L. and Gould, G., Hurdle Technologies, Combination Treatments for Food Stability, Safety and Quality, Kluwer Academic/Plenum, New York, 2002.

89. Scott, V.N., Interaction of factors to control microbial spoilage of refrigerated foods, J. Food Prot., 52, 431, 1989.

90. Lou, Y. and Yousef, A.E., Resistance of Listeria monocytogenes to heat after adaptation to environmental stresses, J. Food Prot., 59, 465, 1996.

91. Gawande, P.V. and Bhagwat, A.A., Protective effects of cold temperature and surface-contact on acid tolerance of Salmonella spp., J. Appl. Microbiol., 93, 689, 2002.

92. Gawande, P.V. and Bhagwat, A.A., Inoculation onto solid surfaces protects Salmonella spp. during acid challenge: a model study using polyetherosulfone membranes, Appl. Environ. Microbiol., 68, 86, 2002.

93. Han, Y. et al., Inactivation of Escherichia coli O157:H7 on surface-uninjured and -injured green pepper (Capsicum annuum L.) by chlorine dioxide gas as demonstrated by confocal laser scanning microscopy, Food Microbiol., 17, 643, 2000.

94. Francis, G.A. and O'Beirne, D., Effects of acid adaptation on the survival of Listeria monocytogenes on modified atmosphere packaged vegetables, Int. J. Food Sci. Technol., 36, 477, 2000.

95. Hsin-Yi, C. and Chou, C.-C., Acid adaptation and temperature effect on the survival of E. coli O157:H7 in acidic fruit juice and lactic fermented milk product, Int. J. Food Microbiol., 70, 189, 2001.

96. Devlieghere, F. et al., Effect of chemicals on the microbial evolution in foods, J. Food Prot., 67, 1977, 2004.

97. McMeekin, T.A. et al., Predictive microbiology: towards the interface and beyond, Int. J. Food Microbiol., 73, 395, 2002.

98. Lanciotti, R. et al., Growth/no growth interfaces of Bacillus cereus, Staphylococcus aureus and Salmonella enteritidis in model systems based on water activity, pH, temperature and ethanol concentration, Food Microbiol., 18, 659, 2001.

99. Presser, K.A., Ross, T., and Ratkowsky, D.A., Modeling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration, and water activity, Appl. Environ. Microbiol., 64, 1773, 1998.

100. Stewart, C.M. et al., Staphylococcus aureus growth boundaries: moving towards mechanistic predictive models based on solute-specific effects, Appl. Environ. Microbiol., 68, 1864, 2002.

Organic Gardeners Composting

Organic Gardeners Composting

Have you always wanted to grow your own vegetables but didn't know what to do? Here are the best tips on how to become a true and envied organic gardner.

Get My Free Ebook


Post a comment