1. Rost, F.W.D., Autofluorescence in plants, fungi and bacteria, in Fluorescence Microscopy, Rost, F.W.D., Ed., Cambridge University Press, New York, 1995.

2. Heim, R., Cubitt, A.B., and Tsien, R.Y., Improved green fluorescence, Nature, 373, 663, 1995.

3. Oscar, T.P., Comparison of predictive models for growth of parent and green fluorescent protein-producing strains of Salmonella, J. Food Prot., 66, 200, 2003.

4. Fuchslin, H.P. et al., Effect of integration of a GFP reporter gene on fitness of Ralstonia eutropha during growth with 2,4-dichlorophenoxyacetic acid, Environ. Microbiol., 5, 878, 2003.

5. Gandhi, M. et al., Use of green fluorescent protein expressing Salmonella Stanley to investigate survival, spatial location, and control on alfalfa sprouts, J. Food Prot., 64, 1891, 2001.

6. Takeuchi, K. and Frank, J.F., Expression of red-shifted green fluorescent protein by Escherichia coli O157:H7 as a marker for the detection of cells on fresh produce, J. Food Prot., 64, 298, 2001.

7. Matz, M.V. et al., Fluorescent proteins from nonbioluminescent Anthozoa species, Nat. Biotechnol., 17, 969, 1999.

8. Gurskaya, N.G. et al., GFP-like chromoproteins as a source of far-red fluorescent proteins, FEBS Lett., 507, 16, 2001.

9. Kasten, F.H., Introduction to fluorescent probes: properties, history and applications, in Biological Techniques Series; Fluorescent and Luminescent Probes for Biological Activity: A Practical Guide to Technology for Quantitative Real-Time Analysis, 2nd ed., Mason, W.T., Ed., Academic Press, New York, 1999.

10. Lawrence, J.R. et al., Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms, Appl. Environ. Microbiol., 69, 5543, 2003.

11. Takeuchi, K. and Frank, J.F., Penetration of Escherichia coli O157:H7 into lettuce tissues as affected by inoculum size and temperature and the effect of chlorine treatment on cell viability, J. Food Prot., 63, 434, 2000.

Brandl, M.T., Quinones, B., and Lindow, S.E., Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces, Proc. Natl. Acad. Sci. USA, 98, 3454, 2001.

Joyner, D.C. and Lindow, S.E., Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor, Microbiology, 146, 2435, 2000.

Leveau, J.H.J. and Lindow, S.E., Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere, Proc. Natl. Acad. Sci. USA, 98, 3446, 2001.

Miller, W.G. et al., Biological sensor for sucrose availability: relative sensitivities of various reporter genes, Appl. Environ. Microbiol., 67, 1308, 2001. van Overbeek, L.S. et al., A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere, J. Microbiol. Methods, 48, 69, 2002.

Carmichael, I. et al., Bacterial colonization and biofilm development on minimally processed vegetables, J. Appl. Microbiol. Symp. Suppl., 85, 45S, 1999. Neu, T., Swerhone, G.D., and Lawrence, J.R., Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems, Microbiology, 147, 299, 2001.

Brandl, M.T. and Mandrell, R.E., Fitness of Salmonella enterica serovar Thompson in the cilantro phyllosphere, Appl. Environ. Microbiol., 68, 3614, 2002.

Leben, C., Relative humidity and the survival of epiphytic bacteria with buds and leaves of cucumber plants, Phytopathology, 78, 179, 1988. Burnett, S.L., Chen, J., and Beuchat, L.R., Attachment of Escherichia coli O157:H7 to the surfaces and internal structures of apples as detected by confocal scanning laser microscopy, Appl. Environ. Microbiol., 66, 4679, 2000. Hallmann, J. et al., Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection, Phytopathology, 91, 415, 2001.

Cooley, M.B., Miller, W.G., and Mandrell, R.E., Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae, Appl. Environ. Microbiol., 69, 4915, 2003.

Dong, Y. et al., Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula, Appl. Environ. Microbiol., 69, 1783, 2003.

Solomon, E.B., Yaron, S., and Matthews, K.R., Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization, Appl. Environ. Microbiol., 68, 397, 2002.

Morris, C., Monier, J., and Jacques, M., Methods for observing micro-bial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms, Appl. Environ. Microbiol., 63, 1570, 1997. Monier, J.M. and Lindow, S.E., Frequency, size, and localization of bacterial aggregates on bean leaf surfaces, Appl. Environ. Microbiol., 70, 346, 2004. Brandl, M.T. et al., Production of autoinducer-2 in Salmonella enterica serovar Thompson contributes to its fitness in chickens but not on cilantro leaf surfaces, Appl. Environ. Microbiol., 71, 2653, 2005.

29. Morris, C.E., Monier, J.M., and Jacques, M.A., A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere, Appl. Environ. Microbiol., 64, 4789, 1998.

30. Normander, B. et al., Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris), Appl. Environ. Microbiol, 64, 1902, 1998.

31. Monier, J.M. and Lindow, S.E., Spatial organization of dual-species bacterial aggregates on leaf surfaces, Appl. Environ. Microbiol., in press.

32. Rojas, C.M. et al., HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings, Proc. Natl. Acad. Sci. USA, 99, 13142, 2002.

33. Lindow, S.E. and Brandl, M.T., Microbiology of the phyllosphere, Appl. Environ. Microbiol, 69, 1875, 2003.

34. Kogure, K., Simidu, U., and Taga, N., A tentative direct microscopic method for counting living bacteria, Can. J. Microbiol., 25, 415, 1979.

35. Wilson, M. and Lindow, S.E., Relationship of total viable and culturable cells in epiphytic populations of Pseudomonas syringae, Appl. Environ. Microbiol., 58, 3908, 1992.

36. Grey, B.E. and Steck, T.R., The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection, Appl. Environ. Microbiol., 67, 3866, 2001.

37. Warriner, K. et al., Internalization of bioluminescent Escherichia coli and Salmonella Montevideo in growing bean sprouts, J. Appl. Microbiol., 95, 719, 2003.

38. Monier, J.M. and Lindow, S.E., Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces, Proc. Natl. Acad. Sci. USA, 100, 15977, 2003.

39. Monier, J.M., Aggregates of resident bacteria facilitate the survival of immigrant bacteria on leaf surfaces, Microbial Ecol., 49(3), 2005.

40. Lowder, M. et al., Effect of starvation and the viable-but-nonculturable state on green fluorescent protein (GFP) fluorescence in GFP-tagged Pseudomonas fluorescens A506, Appl. Environ. Microbiol., 66, 3160, 2000.

41. Brandl, M.T., unpublished data.

42. Breeuwer, P. and Abee, T., Assessment of viability of microorganisms employing fluorescence techniques, Int. J. Food Microbiol., 55, 193, 2000.

43. Shapiro, H.M., Microbial analysis at the single-cell level: tasks and techniques, J. Microbiol. Methods, 42, 3, 2000.

44. Olsen, K.N. et al., Noninvasive measurement of bacterial intracellular pH on a single-cell level with green fluorescent protein and fluorescence ratio imaging microscopy, Appl. Environ. Microbiol., 68, 4145, 2002.

45. Maksimow, M. et al., Simultaneous detection of bacteria expressing GFP and DsRed genes with a flow cytometer, Cytometry, 47, 243, 2002.

46. Erickson, M.G., Moon, D.L., and Yue, D.T., DsRed as a potential FRET partner with CFP and GFP, Biophys. J., 85, 599, 2003.

47. Ramos, C., Molbak, L., and Molin, S., Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates, Appl. Environ. Microbiol., 66, 801, 2000.

48. Miller, W.G., Leveau, J.H., and Lindow, S.E., Improved gfp and inaZ broad-host-range promoter-probe vectors, Mol. Plant Microbe Interact., 13, 1243, 2000.

49. Leveau, J.H. and Lindow, S.E., Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria, J. Bacteriol., 183, 6752, 2001.

50. Anon., Living Colors User Manual, BD Biosciences Clontech, 2001.

51. Chen, H. et al., Culture-independent analysis of fecal enterobacteria in environmental samples by single-cell mRNA profiling, Appl. Environ. Microbiol., 70, 4432, 2004.

52. Pernthaler, A. and Amann, R., Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria, Appl. Environ. Microbiol., 70, 5426, 2004.

53. Kang, Y. et al., Quantitative immunofluorescence of regulated eps gene expression in single cells of Ralstonia solanacearum, Appl. Environ. Microbiol., 65, 2356, 1999.

54. Mc Garvey, J.A., Denny, T.P., and Schell, M.A., Spatial-temporal and quantitative analysis of growth and EPS I production by Ralstonia solanacearum in resistant and susceptible tomato cultivars, Phytopathology, 89, 1233, 1999.

55. Boher, B. et al., Extracellular polysaccharides from Xanthomonas axonopodis pv. manihotis interact with cassava cell walls during pathogenesis, Mol. Plant Microbe Interact., 10, 803, 1997.

56. Piston, D.W., Imaging living cells and tissues by two-photon excitation microscopy, Trends Cell Biol., 9, 66, 1999.

57. Patterson, G.H. and Piston, D.W., Photobleaching in two-photon excitation microscopy, Biophys. j., 78, 2159, 2000.

58. Drummond, D.R., Carter, N., and Cross, R.A., Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors, J. Microsc., 206, 161, 2002.

59. Cox, G. and Sheppard, C., Multiphoton fluorescence microscopy, in Biological Techniques Series; Fluorescent and Luminescent Probes for Biological Activity: A Practical Guide to Technology for Quantitative Real-Time Analysis, 2nd ed., Mason, W.T., Ed., Academic Press, New York, 1999.

60. Neu, T.R., Kuhlicke, U., and Lawrence, J.R., Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms, Appl. Environ. Microbiol., 68, 901, 2002.

61. Neu, T.R., Woelfl, S., and Lawrence, J.R., Three-dimensional differentiation of photo-autotrophic biofilm constituents by multi-channel laser scanning microscopy (single-photon and two-photon excitation), J. Microbiol. Methods, 56, 161, 2004.

62. Charkowski, A.O. et al., Differences in growth of Salmonella enterica and Escherichia coli O157:H7 on alfalfa sprouts, Appl. Environ. Microbiol., 68, 3114, 2002.

63. Gorski, L., Palumbo, J.D., and Nguyen, K.D., Strain-specific differences in the attachment of Listeria monocytogenes to alfalfa sprouts, J. Food Prot., 67, 2488, 2004.

64. Wachtel, M.R., Whitehand, L.C., and Mandrell, R.E., Association of Escherichia coli O157:H7 with preharvest leaf lettuce upon exposure to contaminated irrigation water, J. Food Prot., 65, 18, 2002.

65. Fett, W.F. and Cooke, P.H., Scanning electron microscopy of native biofilms on mung bean sprouts, Can. J. Microbiol., 49, 45, 2003.

66. Rayner, J., Veeh, R., and Flood, J., Prevalence of microbial biofilms on selected fresh produce and household surfaces, Int. J. Food Microbiol., 95, 29, 2004.

67. Brown, I.R. et al., Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall, Mol. Plant Microbe Interact., 14, 394, 2001.

68. Jin, Q. et al., Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae, Mol. Microbiol., 40, 1129, 2001.

70. Benhamou, N. and Belanger, R., Immunoelectron microscopy, in Molecular Methods in Plant Pathology, Singh, R.P. and Singh, U.S., Eds., CRC Press, Boca Raton, FL, 1995.

71. Lippincott-Schwartz, J. and Patterson, G.H., Development and use of fluorescent protein markers in living cells, Science, 300, 87, 2003.

72. Dufrene, Y.F., Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology, Curr. Opin. Microbiol., 6, 317, 2003.

73. Haugland, P.H., Handbook of Fluorescent Probes and Research Products, 9th ed., Molecular Probes, Inc., Eugene, 2002.

Organic Gardeners Composting

Organic Gardeners Composting

Have you always wanted to grow your own vegetables but didn't know what to do? Here are the best tips on how to become a true and envied organic gardner.

Get My Free Ebook

Post a comment