1. Rovira, A.D., Plant root excretions in relation to the rhizosphere effect. I. The nature of root exudate from oats and peas, Plant Soil, 7, 178, 1956.

2. Rovira, A.D., Root excretions in relation to the rhizosphere effect. IV. Influence of plant species, age of plant, light, temperature, and calcium nutrition on exudation, Plant Soil, 11, 53, 1959.

3. Long, S.R., Rhizobium symbiosis: nod factors in perspective, Plant Cell, 8, 1885, 1996.

4. Van Wees, S.C. et al., Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria, Mol. Plant. Microbe Interact., 10, 716, 1997.

5. Glick, B.R. and Bashan, Y., Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens, Biotechnol. Adv., 15, 353, 1997.

6. Simons, M. et al., Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria, Mol. Plant. Microbe Interact., 9, 600, 1996.

7. Preston, G.M., Plant perceptions of plant growth-promoting Pseudomonas, Philos. Trans. R. Soc. Lond. B. Biol. Sci, 359, 907, 2004.

8. Sessitsch, A., Reiter, B., and Berg, G., Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities, Can. J. Microbiol., 50, 239, 2004.

9. CDC, Centers for Disease Control and Prevention, U.S. Foodborne Disease Outbreak Line Listings, 1990-2002, 2004, 2004, foodborneoutbreaks/us_outb.htm.

10. CSPI, Outbreak alert: closing the gaps in our federal food safety net, Report from Center for Science in the Public Interest, 58, 2004, reports/index.html.

11. Katznelson, H. and Sutton, M.D., A rapid phage plaque count method for the detection of bacteria as applied to the demonstration of internally borne bacterial infections of seed, J. Bacteriol., 61, 689, 1951.

12. Leben, C., Soybean flower-to-seed movement of epiphytic bacteria, Can. J. Microbiol, 22, 429, 1976.

13. Charkowski, A.O., Sarreal, C.Z., and Mandrell, R.E., Wrinkled alfalfa seeds harbor more aerobic bacteria and are more difficult to sanitize than smooth seeds, J. Food Prot, 64, 1292, 2001.

14. Torsvik, V., Goksoyr, J., and Daae, F.L., High diversity in DNA of soil bacteria, Appl. Environ. Microbiol., 56, 782, 1990.

15. Geldreich, E.E., Kenner, B.A., and Kabler, P.W., Occurrence of coliforms, fecal coliforms, and streptococci on vegetation and insects, Appl. Microbiol., 12, 63, 1964.

16. Geldreich, E.E. and Bordner, R.H., Fecal contamination of fruits and vegetables during cultivation and processing for market. A review, J. Milk Food Technol., 34, 1971.

17. Gould, W.A., Micro-contamination of horticultural products, HortScience, 8, 12, 1973.

18. Ercolani, G.L., Bacteriological quality assessment of fresh marketed lettuce and fennel, Appl. Environ. Microbiol., 31, 847, 1976.

19. Sivapalasingam, S., Friedman, C.R., and Tauxe, C.R.V., Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997, J. Food Prot, 67, 2342, 2004.

20. Collmer, A. and Bauer, D.W., Erwinia chrysanthemi and Pseudomonas syringae: plant pathogens trafficking in extracellular virulence proteins, Curr. Top. Microbiol. Immunol., 192, 43, 1994.

21. Smit, G. et al., Molecular mechanisms of attachment of Rhizobium bacteria to plant roots, Mol. Microbiol., 6, 2897, 1992.

22. Guttman, D.S., Plants as models for the study of human pathogenesis, Biotechnol. Adv., 22, 363, 2004.

23. Curl, E.A. and Truelove, B., The structure and function of roots, in The Rhizosphere, Yaron, B., Ed., Springer-Verlag, Berlin, 1986, p. 9.

24. Curl, E.A. and Truelove, B., Root exudates, in The Rhizosphere, Yaron, B., Ed., Springer-Verlag, Berlin, 1986, p. 55.

25. Dazzo, F.B. et al., Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis, Appl. Environ. Microbiol., 48, 1140, 1984.

26. Smit, G. et al., Purification and partial characterization of the Rhizobium leguminosarum biovar viciae Ca2+-dependent adhesin, which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips, J. Bacteriol., 171, 4054, 1989.

27. Charkowski, A.O. et al., Differences in growth of Salmonella enterica and Escherichia coli O157:H7 on alfalfa sprouts, Appl. Environ. Microbiol., 68, 3114, 2002.

28. Jeffree, C.E., Structure and ontogeny of plant cuticles, in Plant Cuticles, Kerstiens, G., Ed., Bios, Oxford, 1996, p. 33.

29. Beattie, G.A., Leaf surface waxes and the process of leaf colonization by microorganisms, in Phyllosphere Microbiology, Lindow, S.E., Hecht-Poinar, E.I., and Elliott, V.J., Eds., APS Press, St. Paul, MN, 2002, p. 3.

30. Purdy, R.E. and Kolattukudy, P.E., Hydrolysis of plant cuticle by plant pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani pisi, Biochemistry (Mosc). 14, 2832, 1975.

31. Singh, P. et al., Investigation on epiphytic lining Pseudomonas species from Malus domestica with an antagonistic effect to Venturia inaequalis on isolated plant cuticle membranes, Environ. Microbiol., 6, 1149, 2004.

32. Hirano, S.S. and Upper, C.D., Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae: a pathogen, ice nucleus, and epiphyte, Microbiol. Mol. Biol. Rev, 64, 624, 2000.

33. Handelsman, J. and Stabb, E.V., Biocontrol of soilborne plant pathogens, Plant Cell, 8, 1855, 1996.

34. Lindow, S.E. and Brandl, M.T., Microbiology of the phyllosphere, Appl. Environ. Microbiol., 69, 1875, 2003.

35. de Weert, S. et al., Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens, Mol. Plant. Microbe Interact., 15, 1173, 2002.

36. Kinkel, L.L., Wilson, M., and Lindow, S.E., Plant species and plant incubation conditions influence variability in epiphytic bacterial population size, Microb. Ecol, 39, 1, 2000.

37. Hirano, S.S. et al., Lognormal distribution of epiphytic bacterial populations on leaf surfaces, Appl. Environ. Microbiol., 44, 695, 1982.

38. Lund, B.M., Ecosystems in vegetable foods, J. Appl. Bacteriol. Symp. Suppl., 1992.

39. Keipper, C.H. and Fred, E.B., The microorganisms of cabbage and their relation to sauerkraut production, J. Bacteriol., 19, 53, 1930.

40. Sapers, G.M., Efficacy of washing and sanitizing methods for disinfection of fresh fruit and vegetable products, Food Technol. Biotechnol., 39, 305, 2001.

41. Dazzo, F.B., Napoli, C.A., and Hubbell, D.H., Adsorption of bacteria to roots as related to host specificity in the Rhizobium-clover symbiosis, Appl. Environ. Microbiol, 32, 166, 1976.

42. Higashi, S. and Mikiko, A., Scanning electron microscopy of Rhizobium trifolii infection sites on root hairs of white clover, Appl. Environ. Microbiol., 40, 1094, 1980.

43. Smit, G., Kijne, J.W., and Lugtenberg, B.J., Roles of flagella, lipopolysacchar-ide, and a Ca2+-dependent cell surface protein in attachment of Rhizobium leguminosarum biovar viciae to pea root hair tips, J. Bacteriol., 171, 569, 1989.

44. Smit, G., Kijne, J.W., and Lugtenberg, B.J., Involvement of both cellulose fibrils and a Ca2+-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips, J. Bacteriol., 169, 4294, 1987.

Ausmees, N. et al, Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii, Microbiology, 145, 1253, 1999.

Kijne, J.W. et al., Lectin-enhanced accumulation of manganese-limited Rhizobium leguminosarum cells on pea root hair tips, J. Bacteriol., 170, 2994, 1988.

van Rhijn, P. et al., Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae, Plant Physiol, 126, 133, 2001.

Bohlool, B.B. and Schmidt, E.L., Lectins: a possible basis for specificity in the Rhizobium-legume root nodule symbiosis, Science, 185, 269, 1974. Tsien, H.C. and Schmidt, E.L., Localization and partial characterization of soybean lectin-binding polysaccharide of Rhizobium japonicum, J. Bacteriol., 145, 1063, 1981.

Schloter, M. et al., Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera, Appl. Environ. Microbiol., 63, 2038, 1997. Ho, S.C., Wang, J.L., and Schindler, M., Carbohydrate binding activities of Bradyrhizobium japonicum. I. Saccharide-specific inhibition of homotypic and heterotypic adhesion, J. Cell Biol., 111, 1631, 1990.

Loh, J.T. et al., Carbohydrate binding activities of Bradyrhizobium japonicum: unipolar localization of the lectin BJ38 on the bacterial cell surface, Proc. Natl. Acad. Sci. USA, 90, 3033, 1993.

Ausmees, N., Jacobsson, K., and Lindberg, M., A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii, Microbiology, 147, 549, 2001.

Gelvin, S.B., Agrobacterium and plant genes involved in T-DNA transfer and integration, Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 223, 2000. Lippincott, B.B. and Lippincott, J.A., Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens, J. Bacteriol, 97, 620, 1969.

Douglas, C.J., Halperin, W., and Nester, E.W., Agrobacterium tumefaciens mutants affected in attachment to plant cells, J. Bacteriol., 152, 1265, 1982. Crews, J.L., Colby, S., and Matthysse, A.G., Agrobacterium rhizogenes mutants that fail to bind to plant cells, J. Bacteriol., 172, 6182, 1990. Brisset, M. et al., Attachment, chemotaxis, and multiplication of Agrobacterium tumefaciens biovar 1 and biovars 3 on grapevine and pea, Appl. Environ. Microbiol., 57, 3178, 1991.

Swart, S. et al., Rhicadhesin-mediated attachment and virulence of an Agrobacterium tumefaciens chvB mutant can be restored by growth in a highly osmotic medium, J. Bacteriol., 176, 3816, 1994.

Matthysse, A.G., Yarnall, H.A., and Young, N., Requirement for genes with homology to ABC transport systems for attachment and virulence of

Agrobacterium tumefaciens, J. Bacteriol, 178, 5302, 1996.

Reuhs, B.L., Kim, J.S., and Matthysse, A.G., Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide, J. Bacteriol., 179, 5372,

Organic Gardeners Composting

Organic Gardeners Composting

Have you always wanted to grow your own vegetables but didn't know what to do? Here are the best tips on how to become a true and envied organic gardner.

Get My Free Ebook

Post a comment