13. Parish, M.E., High pressure inactivation of Saccharomyces cerevisiae, endogenous microflora and pectinmethylesterase in orange juice, J. Food Prot., 18, 57, 1998.

14. Zook, C.D. et al., High pressure inactivation kinetics of Saccharomyces cerevisiae ascospores in orange and apple juices, J. Food Sci., 64, 533, 1999.

Timson, W.J. and Short, A.J., Resistance of microorganisms to hydrostatic pressure, Biotechnol. Bioeng. 12, 139, 1965.

Seyderhelm, I. and Knorr, D., Reduction of Bacillus stearothermophilus spores by combined high pressure and temperature treatments, ZFL Eur. Food Sci., 43, 17, 1992.

Kakugawa, K. et al., Thermal inactivating behavior of Bacillus stearothermo-philus under high pressure, in High Pressure Bioscience and Biotechnology, Hayashi, R. and Balny, C., Eds., Elsevier Science, Amsterdam, 1996, p. 171. Palou, E. et al., High pressure treatment in food preservation, in Handbook of Food Preservation, Shafiur Rahman, M., Ed., Marcel Dekker, New York, 1999, chap. 19.

Paidhungat, M., et al., Mechanisms of induction of germination of Bacillus subtilis spores by high pressure, Appl. Envrion. Microbiol., 68, 3172, 2002. Heinz, V. and Knorr, D., High pressure germination and inactivation kinetics of bacterial spores, in High Pressure Food Science, Bioscience and Chemistry, Isaacs, N.S., Ed., Royal Society of Chemistry, Cambridge, U.K., 1998. Ludwig, H., Van Almsick, G., and Sojka, B., High pressure inactivation of microorganisms, in High Pressure Bioscience and Biotechnology, Hayashi, R. and Balny, C., Eds., Elsevier Science, Amsterdam, 1996, p. 237. Oh, S. and Moon, M.J., Inactivation of Bacillus cereus spores by high hydrostatic pressure at different temperatures, J. Food Prot., 66, 599, 2003. Linton, M., McClements, J.M.J., and Patterson, M.F., Inactivation of Escherichia coli O157:H7 in orange juice using a combination of high pressure and mild heat, J. Food Prot., 62, 277, 1999.

Teo, A.Y.L., Ravishankar, S., and Sizer, C.E., Effect of low-temperature, high-pressure treatment on the survival of Escherichia coli O157:H7 and Salmonella in unpasteurized fruit juices, J. Food Prot., 64, 1122, 2001. Wuytack, E.Y. et al., Decontamination of seeds for seed sprout production by high hydrostatic pressure, J. Food Prot., 66, 918, 2003.

Ramaswamy, H.S., Riahi, E., and Idziak, E., High-pressure destruction kinetics of E. coli (29055) in apple juice, J. Food Sci., 68, 1750, 2003. Giddings, N.J., Allard, H.A., and Hite, B.H., Inactivation of the tobacco mosaic virus by high pressure, Phytopathology, 19, 749, 1929.

Otake, T. et al., Effects of high hydrostatic pressure treatment of HIV infectivity, in High Pressure Research in Bioscience and Biotechnology, Heremans, K., Ed., Leuven University Press, Leuven, 1997, p. 223. Brauch, G., Haensler, U., and Ludwig, H., The effect of pressure on bacteriophages, High Pressure Res., 5, 767, 1990.

Shigehisa, T. et al., Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products, Int. J. Microbiol., 12, 207, 1991.

Shigehisa, T. et al., Inactivation of HIV in blood plasma by high hydrostatic pressure, in High Pressure Bioscience and Biotechnology, Hayashi, R. and Balny, C., Eds., Elsevier Science, Amsterdam, 1996, p. 273.

Kingsley, D.H. et al., Inactivation of hepatitis A virus and a calicivirus by high hydrostatic pressure, J. Food Prot., 65, 1605, 2002.

Robertson, L.J. and Gjerde, B., Occurrence of parasites on fruits and vegetables in Norway, J. Food Prot., 64, 1793, 2001.

Slifko, T.R. et al., Effect of high hydrostatic pressure on Cryptosporidium parvum infectivity, J. Food Prot., 63, 1262, 2000.

35. Molina-Garcia, A.D. and Sanz, P.D., Anisakis simplex larva killed by high hydrostatic-pressure processing, J. Food Prot., 65, 383, 2002.

36. Dong, F.M., Cook, A.R., and Herwig, R.P., Research Note: high hydrostatic pressure treatment of finfish to inactivate Anisakis simplex, J. Food Prot., 66, 1924, 2003.

37. Diehl, J.F., Food irradiation: past, present and future, Radiat. Phys. Chem., 63, 211, 2002.

38. Lacroix, M. and Ouattara, B., Combined industrial processes with irradiation to assure innocuity and preservation of food products: a review, Food Res Int., 33, 719, 2000.

39. Urbain, W.M., Food Irradiation, Academic Press, Orlando, FL, 1986.

40. Patterson, M.F. and Loaharanu, P., Irradiation, in The Microbiological Safety and Quality of Food, Lund, B.M., Baird-Parker, T.C., and Gould, G.W., Eds., Aspen, Gaithersburg, MD, 2000, p. 65.

41. WHO, High Dose Irradiation, Wholesomeness of Food Irradiated With Doses Above 10kGy, report of a Joint FAO/IAEA/WHO Study Group, World Health Organization Technical Report Series No. 890, Geneva, 1999.

42. Al-Bachir, M., Effect of gamma irradiation on storability of two cultivars of Syrian grapes (Vitis vinifera), Radiat. Phys. Chem., 55, 81, 1999.

43. Aziz, N.H. and Moussa, L.A.A., Influence of gamma-radiation on myco-toxin producing moulds and mycotoxins in fruits, Food Control, 13, 281, 2002.

44. Niemira, B.A., Fan, X., and Sommers, C.H., Irradiation temperature influences product quality factors of frozen vegetables and radiation sensitivity of inoculated Listeria monocytogenes, J. Food Prot., 65, 1406, 2002.

45. Foley, D.M. et al., Reduction of Escherichia coli O157:H7 in shredded iceberg lettuce by chlorination and gamma irradiation, Radiat. Phys. Chem., 63, 391, 2002.

46. Niemira, B.A. et al., Ionizing radiation sensitivity of Listeria monocytogenes ATCC 49594 and Listeria innocua ATCC 51742 inoculated on endive (Cichorium endiva), J. Food Prot., 66, 993, 2003.

47. Niemira, B.A. et al., Irradiation inactivation of four Salmonella serotypes in orange juices with various turbidities, J. Food Prot., 64, 614, 2001.

48. van Gerwen, S.J.C., A data analysis of the irradiation parameter D10 for bacteria and spores under various conditions, J. Food Prot., 62, 1024, 1999.

49. Dubey, J.P. et al., Effect of gamma irradiation on unsporulated and sporulated Toxoplasma gondii oocysts, Int. J. Parasitol., 28, 369, 1998.

50. Patterson, M.F., Food irradiation and food safety, Rev. Med. Microbiol., 4, 151, 1993.

51. Farkas, J., Irradiation as a method for decontaminating food: a review, Int. J. Food Microbiol., 44, 189, 1998.

52. Bidawid, S., Farber, J.M., and Sattar, S.A., Inactivation of hepatitis A virus (HAV) in fruits and vegetables by gamma irradiation, Int. J. Food Microbiol., 57, 91, 2000.

53. Heidelbaugh, N.D. and Giron, D.J., Effect of processing on recovery of poliovirus from inoculated foods, Food Sci., 34, 239, 1969.

54. Sullivan, R. et al., Gamma radiation inactivation of coxsackievirus B-2, Appl. Microbiol., 26, 14, 1973.

55. Mallett, J.C., Potential of irradiation technology for improving shellfish sanitation, J. Food Saf., 11, 231, 1991.

Zimmermann, U. and Benz, R., Dependence of the electrical breakdown voltage on the charging time in valonia utricularis, J. Membr. Biol., 53, 33, 1980.

Zimmermann, U., Electrical breakdown, electropermeabilization and electrofu-sion, Rev. Physiol. Biochem. Pharmacol., 105, 175, 1986. Castro, A.J., Barbosa-Canovas, G.V., and Swanson, B.G., Microbial inactiva-tion of foods by pulsed electric fields, J. Food Process. Pres., 17, 47, 1993. Morren, J., Roodenburg, B., and de Haan, S.W.H., Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers, Innov. Food Sci. Emerg. Technol., 4, 285, 2003.

Zhang, Q.H., Barbosa-Canovas, G.V., and Swanson, B.G., Engineering aspects of pulsed electric field pasteurization, J. Food Eng., 25, 261, 1995. Qin, B.L. et al., Inactivating microorganism using a pulsed electric field continuous treatment system, IEEE Trans. Ind. Appl., 34, 43, 1998. Schoenbach, K.H. et al., The effect of pulsed electric fields on biological cells: experiments and applications, IEEE Trans. Plasma Sci., 25, 284, 1997. Sale, A.J.H. and Hamilton, W.A., Effects of high electric fields on microorganisms: I. Killing of bacteria and yeast, Biochim. Biophys. Acta, 148, 781, 1967.

Ho, S.Y. et al., Inactivation of Pseudomonas fluorescens by high voltage electric pulses, J. Food Sci., 60, 1337, 1995.

Qin, B.L. et al., Inactivation of microorganisms by pulsed electric fields with different voltage waveforms, IEEE Trans. Dielec. Insul., 1, 1047, 1994. Hülsheger, H., Pottel, J., and Niemann, E.G., Killing of bacteria with electric pulses of high field strength, Radiat. Environ. Biophys., 20, 53, 1981. Sitzmann, V., High voltage pulse techniques for food preservation, in New Methods for Food Preservation, Gould, G.W., Ed., Blackie Academic and Professional, London, 1995, p. 236.

Zhang, Q.H., Qiu, X., and Sharma, S.K., Recent development in pulsed electric field processing, in New Technologies Yearbook, National Food Processors Association, Washington D.C., 1997, p. 31.

Raso, J. et al., Inactivation of Zygosaccharomyces bailii in fruit juices by heat, high hydrostatic pressure and pulsed electric fields, J. Food Sci., 63, 1042, 1998.

Evrendilek, G.A., Zhang, Q.H., and Richiter, E.R., Inactivation of Escherichia coli O157:H7 and Escherichia coli 8739 in apple juice by pulsed electric fields, J. Food Prot., 62, 793, 1999.

Iu, J., Mittal, G.S., and Griffiths, M.W., Reduction in levels of Escherichia coli O157:H7 in apple cider by pulsed electric fields, J. Food Prot., 64, 964, 2001. McDonald, C.J. et al., Effects of pulsed electric fields on microorganisms in orange juice using electric field strengths of 30 and 50kV/cm, J. Food Sci., 65, 984, 2000.

Terebiznik, M.R. et al., Combined effect of nisin and pulsed electric fields on the inactivation of Escherichia coli., J. Food Prot., 63, 741, 2000. Pol, I.E. et al., Influence of food matrix on inactivation of Bacillus cereus by combinations of nisin, pulsed electric field treatment, and carvacrol, J. Food Prot, 64, 1012, 2001.

Unal, R., Kim, J.G., and Yousef, A.E., Inactivation of Escherichia coli O157:H7, Listeria monocytogenes, and Lactobacillus leichmannii by combinations of ozone and pulsed electric field, J. Food Prot., 64, 777, 2001.

76. Hodgins, A.M., Mittal, G.S., and Griffiths, M.W., Pasteurization of fresh orange juice using low-energy pulsed electrical field, J. Food Sci., 67, 2294, 2002.

77. Liang, Z., Mittal, G.S., and Griffiths, M.W., Inactivation of Salmonella Typhimurium in orange juice containing antimicrobial agents by pulsed electric field, J. Food Prot., 65, 1081, 2002.

78. Min, S. et al., Commercial-scale pulsed electric field processing of orange juice, J. Food Sci., 68, 1265, 2003.

79. Giner, J. et al., Inactivation of peach polyphenoloxidase by exposure to pulsed electric fields, J. Food Sci., 67, 1467, 2002.

80. Min, S., Min, S.K., and Zhang, Q.H., Inactivation kinetics of tomato juice lipoxygenase by pulsed electric fields, J. Food Sci., 68, 1995, 2003.

81. Mason, T.J. and Lorimer, J.P., Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing, 1st ed., Wiley-VCH, Berlin, 2002, p. 314.

82. Hoover, D.G., Ultrasound, in Kinetics of Microbial Inactivation for Alternative Food Processing Technologies, J. Food Sci. Suppl., 93, 2000.

83. Hughes, D.E. and Nyborg, W.L., Cell disruption by ultrasound, Science, 38, 108, 1962.

84. Palacios, P. et al., Study of substances released by ultrasonic treatment from Bacillus stearothermophilus spores, J. Appl. Bacteriol., 71, 445, 1991.

85. Seymour, I.J. et al., Ultrasound decontamination of minimally processed fruits and vegetables, Int. J. Food Sci. Technol., 37, 547, 2002.

86. Mincz, M., Guerrero, S., and Alzamora, S.M., Effectiveness of ultrasound combined with refrigeration on extending shelf-life of fresh fruit juices, 30G-20, presented at IFT Annual Meeting, Anaheim, CA, June 15-19, 2002.

87. McPherson, L.L., Understanding ORP's role in the disinfection process, Water Eng. Manage., 140, 29, 1993.

88. Hayashibara, T., Kadowaki A., and Yuda N., A study of the disinfection/ microbiocidal effects of electrolyzed oxidizing water, Japn. J. Med. Technol., 43, 555, 1994.

89. Guan, D. and Li, L., Studies on the production of strongly oxidized water by electrolysis, J. China Agric. Univ., 2, 109, 1997.

90. Hirano, H. and Ueda, O., Characteristics of electrolyzed neutral water possibility of the practical use for food hygiene, Shokuhin Kogyo, 40, 25, 1997.

91. Koseki, S. and Itoh, K, Fundamental properties of electrolyzed water, Nippon Shokuhin Kagaku Kokago Kaishi, 47, 390, 2000.

92. Venkitanarayanan, K.S. et al., Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes, Appl. Environ. Microbiol., 65, 4276, 1999.

93. Izumi, H., Electrolyzed water as a disinfectant for fresh-cut vegetables, J. Food Sci., 64, 536, 1999.

94. Park, C.M. et al., Pathogen reduction and quality of lettuce treated with electrolyzed oxidizing and acidified chlorinated water, J. Food Sci., 66, 1368, 2001.

95. Deza, M.A., Araujo, M., and Garrido, M.J., Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water, Lett. Appl. Microbiol., 37, 482, 2003.

96. Ratna, R.S. and Demirci, A., Treatment of Escherichia coli O157:H7 inoculated alfalfa seeds and sprouts with electrolyzed oxidizing water, Int. J. Food Microbiol, 86, 231, 2003.

97. Al-Haq, M.I. et al., Fungicidal effectiveness of electrolyzed oxidizing water on postharvest brown rot of peach, Hort. Sci., 36, 1310, 2001.

98. Al-Haq, M.I. et al., Disinfection effects of electrolyzed oxidizing water on suppressing fruit rot of pear caused by Botryosphaeria berengeriana, Food Res. Int., 35, 657, 2002.

Organic Gardeners Composting

Organic Gardeners Composting

Have you always wanted to grow your own vegetables but didn't know what to do? Here are the best tips on how to become a true and envied organic gardner.

Get My Free Ebook

Post a comment