Info

62. Matthysse, A.G. and McMahan, S., Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants, Appl. Environ. Microbiol, 64, 2341, 1998.

63. Matthysse, A.G. and McMahan, S., The effect of the Agrobacterium tumefaciens attR mutation on attachment and root colonization differs between legumes and other dicots, Appl. Environ. Microbiol., 67, 1070, 2001.

64. Whatley, M.H. et al., Role of Agrobacterium cell envelope lipopolysaccharide in infection site attachment, Infect. Immun., 13, 1080, 1976.

65. Matthysse, A.G., Characterization of nonattaching mutants of Agrobacterium tumefaciens, J. Bacteriol., 169, 313, 1987.

66. Wagner, V.T. and Matthysse, A.G., Involvement of a vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells, J. Bacteriol, 174, 5999, 1992.

67. Sanders, L.C. et al., A homolog of the substrate adhesion molecule vitronectin occurs in four species of flowering plants, Plant Cell, 3, 629, 1991.

68. Gelvin, S.B., Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool, Microbiol. Mol. Biol. Rev., 67, 16, 2003.

69. Belanger, C. et al., Genetic analysis of nonpathogenic Agrobacterium tumefaciens mutants arising in crown gall tumors, J. Bacteriol., 177, 3752, 1995.

70. Lai, E.M. and Kado, C.I., Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens, J. Bacteriol, 180, 2711, 1998.

71. Matthysse, A.G., Holmes, K.V., and Gurlitz, R.H., Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells, J. Bacteriol, 145, 583, 1981.

72. Matthysse, A.G., Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection, J. Bacteriol., 154, 906, 1983.

73. Matthysse, A.G., White, S., and Lightfoot, R., Genes required for cellulose synthesis in Agrobacterium tumefaciens, J. Bacteriol, 177, 1069, 1995.

74. Hayward, A.C., Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum, Annu. Rev. Phytopathol., 29, 65, 1991.

75. Kao, C.C. and Sequeira, L., A gene cluster required for coordinated biosynthesis of lipopolysaccharide and extracellular polysaccharide also affects virulence of Pseudomonas solanacearum, J. Bacteriol, 173, 7841, 1991.

76. Baker, J.M. et al., Chemical characterization of th lipopolysaccharide of Ralstonia solanacearum, Appl. Environ. Microbiol, 47, 1096, 1984.

77. He, S.Y., Type III protein secretion systems in plant and animal pathogenic bacteria, Annu. Rev. Phytopathol., 36, 363, 1998.

78. Van Gijsegem, F. et al., Ralstonia solanacearum produces hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells, Mol. Microbiol., 36, 249, 2000.

79. Kang, Y. et al., Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence, Mol. Microbiol., 46, 427, 2002.

80. Salanoubat, M. et al., Genome sequence of the plant pathogen Ralstonia solanacearum, Nature, 415, 497, 2002.

81. Durand, E. et al., Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure, J. Bacteriol., 185, 2749, 2003.

Sudakevitz, D., Imberty, A., and Gilboa-Garber, N., Production, properties and specificity of a new bacterial L-fucose- and D-arabinose-binding lectin of the plant aggressive pathogen Ralstonia solanacearum, and its comparison to related plant and microbial lectins, J. Biochem. (Tokyo), 132, 353, 2002. Sudakevitz, D. et al., A new Ralstonia solanacearum high-affinity mannose-binding lectin RS-IIL structurally resembling the Pseudomonas aeruginosa fucose-specific lectin PA-IIL, Mol. Microbiol., 52, 691, 2004. Genin, S. and Boucher, C., Lessons learned from the genome analysis of Ralstonia solanacearum, Annu. Rev. Phytopathol., 42, 107, 2004. Rojas, C.M. et al., HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings, Proc. Natl. Acad. Sci. USA, 99, 13142, 2002. Clantin, B. et al., The crystal structure of filamentous hemagglutinin secretion domain and its implications for the two-partner secretion pathway, Proc. Natl. Acad. Sci. USA, 101, 6194, 2004.

Salman, M.N., Establishment of callus and cell suspension cultures from Gypsophila paniculata leaf segments and study of the attachment of host cells by Erwinia herbicola pv. gypsophilae, Plant Cell Tissue Organ Culture, 69, 189, 2002.

Rantakari, A. et al., Type III secretion contributes to the pathogenesis of the soft-rot pathogen Erwinia carotovora: partial characterization of the hrp gene cluster, Mol. Plant. Microbe Interact., 14, 962, 2001.

Holeva, M.C. et al., Use of a pooled transposon mutation grid to demonstrate roles in disease development for Erwinia carotovora subsp. atroseptica putative type III secreted effector (DspE/A) and helper (HrpN) proteins, Mol. Plant. Microbe Interact., 17, 943, 2004.

Bogs, J. et al., Colonization of host plants by the fire blight pathogen Erwinia amylovora marked with genes for bioluminescence and fluorescence, Phytopathology, 88, 416, 1998.

Jin, Q. et al., Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae, Mol. Microbiol, 40, 1129, 2001.

Korhonen, T.K. et al., A N-acetyllactosamine-specific cell-binding activity in a plant pathogen, Erwinia rhapontici, FEBS Lett., 236, 163, 1988. Romantschuk, M. and Bamford, D.H., The causal agent of halo blight in bean, Pseudomonas syringae pv. phaseolicola, attaches to stomata via its pili, Microb. Pathog, 1, 139, 1986.

Hirano, S.S., Baker, L.S., and Upper, C.D., Raindrop momentum triggers growth of leaf-associated populations of Pseudomonas syringae on filed-grown snap bean plants, Appl. Environ. Microbiol., 62, 2560, 1996. Rainey, P.B., Adaptation of Pseudomonas fluorescens to the plant rhizosphere, Environ. Microbiol., 1, 243, 1999.

Liao, C.H. and Fett, W.F., Analysis of native microflora and selection of strains antagonistic to human pathogens on fresh produce, J. Food Prot., 64, 1110, 2001.

De Weger, L.A. et al., Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots, J. Bacteriol., 169, 2769, 1987.

98. Vesper, S.J., Production of pili (fimbriae) by Pseudomonas fluorescens and correlation with attachment to corn roots, Appl. Environ. Microbiol., 53, 1397, 1987.

99. Anderson, A.J., Habibzadegah-Tan, P., and Tepper, C.S., Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas putida, Appl. Environ. Microbiol., 54, 375, 1988.

100. Turnbull, G.A. et al., The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots, FEMS Microbiol. Ecol., 35, 57, 2001.

101. Elrod, R.P. and Braun, A.C., Pseudomonas aeruginosa: its role as a plant pathogen, J. Bacteriol., 44, 633, 1942.

102. Plotnikova, J.M., Rahme, L.G., and Ausubel, F.M., Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis, Plant Physiol, 124, 1766, 2000.

103. Rahme, L.G. et al., Plants and animals share functionally common bacterial virulence factors, Proc. Natl. Acad. Sci. USA, 97, 8815, 2000.

104. Hahn, H.P., The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa: a review, Gene, 192, 99, 1997.

105. Ojanen-Reuhs, T. et al., Characterization of the fimA gene encoding bundle-forming fimbriae of the plant pathogen Xanthomonas campestris pv. vesicatoria, J. Bacteriol, 179, 1280, 1997.

106. Van Sluys, M.A. et al., Comparative genomic analysis of plant-associated bacteria, Annu. Rev. Phytopathol., 40, 169, 2002.

107. Burdman, S., Okon, Y., and Jurkevitch, E., Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots, Crit. Rev. Microbiol., 26, 91, 2000.

108. Del Gallo, M., Negi, M., and Neyra, C.A., Calcofluor- and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipofer-um, J. Bacteriol, 171, 3504, 1989.

109. Croes, C.L. et al., The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots, J. Gen. Microbiol., 139, 2261, 1993.

110. Burdman, S. et al., Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation, Mol. Plant. Microbe Interact., 14, 555, 2001.

111. Korhonen, T.K. et al., Type 3 fimbriae of Klebsiella sp.: molecular characterization and role in bacterial adhesion to plant roots, J. Bacteriol., 155, 860, 1983.

112. Haahtela, K., Tarkka, E., and Korhonen, T.K., Type 1 fimbria-mediated adhesion of enteric bacteria to grass roots, Appl. Environ. Microbiol., 49, 1182, 1985.

113. Mendgen, K., Hahn, M., and Deising, H., Morphogenesis and mechanisms of penetration by plant pathogenic fungi, Annu. Rev. Phytopathol., 34, 367, 1996.

114. Doss, R.P. et al., Adhesion of germlings of Botrytis cinerea, Appl. Environ. Microbiol, 61, 260, 1995.

115. Seymour, I.J. and Appleton, H., Foodborne viruses and fresh produce, J. Appl. Microbiol, 91, 759, 2001.

116. Kakani, K., Robbins, M., and Rochon, D., Evidence that binding of cucumber necrosis virus to vector zoospores involves recognition of oligosaccharides, J. Virol, 77, 3922, 2003.

Galan, J.E. and Collmer, A., Type III secretion machines: bacterial devices for protein delivery into host cells, Science, 284, 1322, 1999.

Staskawicz, B.J. et al., Common and contrasting themes of plant and animal diseases, Science, 292, 2285, 2001.

Cao, H., Baldini, R.L., and Rahme, L.G., Common mechanisms for pathogens of plants and animals, Annu. Rev. Phytopathol., 39, 259, 2001. Dong, Y. et al., Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula, Appl. Environ. Microbiol., 69, 1783, 2003.

Takeuchi, K. and Frank, J.F., Penetration of Escherichia coli O157:H7 into lettuce tissues as affected by inoculum size and temperature and the effect of chlorine treatment on cell viability, J. Food Prot., 63, 434, 2000. Takeuchi, K. and Frank, J.F., Direct microscopic observation of lettuce leaf decontamination with a prototype fruit and vegetable washing solution and 1% NaCl-NaHCO3, J. Food Prot, 64, 1235, 2001.

Takeuchi, K. and Frank, J.F., Quantitative determination of the role of lettuce leaf structures in protecting Escherichia coli O157:H7 from chlorine disinfection, J. Food Prot, 64, 147, 2001.

Burnett, S.L., Chen, J., and Beuchat, L.R., Attachment of Escherichia coli O157:H7 to the surfaces and internal structures of apples as detected by confocal scanning laser microscopy, Appl. Environ. Microbiol., 66, 4679, 2000.

Ukuku, D.O. and Fett, W.F., Relationship of cell surface charge and hydrophobicity to strength of attachment of bacteria to cantaloupe rind, J. Food Prot, 65, 1093, 2002.

Richards, G.M. and Beuchat, L.R., Attachment of Salmonella Poona to cantaloupe rind and stem scar tissues as affected by temperature of fruit and inoculum, J. Food Prot., 67, 1359, 2004.

Wachtel, M.R., Whitehand, L.C., and Mandrell, R.E., Association of

Escherichia coli O157:H7 with preharvest leaf lettuce upon exposure to contaminated irrigation water, J. Food Prot., 65, 18, 2002.

Brandl, M.T. and Mandrell, R.E., Fitness of Salmonella enterica serovar

Thompson in the cilantro phyllosphere, Appl. Environ. Microbiol., 68, 3614,

How To Reduce Acne Scarring

How To Reduce Acne Scarring

Acne is a name that is famous in its own right, but for all of the wrong reasons. Most teenagers know, and dread, the very word, as it so prevalently wrecks havoc on their faces throughout their adolescent years.

Get My Free Ebook


Post a comment