Concluding Remarks

The number of BVMOs that are available in recombinant form has significantly increased over the last few years. Several close homologs of CHMO and cyclopen-tanone monooxygenase have been described and exploited for biocatalytic studies revealing new complementing enantio- and regioselective properties. Furthermore, BVMOs have been found that cover totally new substrates ranges (e.g. HAPMO and PAMO acting on aromatic ketones and sulfides [55, 60]) or that display novel selectivities (e.g. a novel BVMO from M. tuberculosis enabling kinetic resolution of bicyclic ketones [72, 73]). These research activities have broadened the biocatalytic scope of BVMO applications. The availability of a large collection of sequence microbial genomes will facilitate cloning and exploration of new BVMOs, thereby expanding the biocatalytic scope of BVMOs even further.

Except for the discovery of novel BVMOs and their corresponding catalytic abilities, new approaches have also been developed to perform BVMO-mediated conversions. Using E. coli cells expressing CHMO an asymmetric Baeyer-Villiger biooxidation reaction has been performed at kilogram scale [46]. This convincingly shows that by using whole cells expressing a BVMO of interest selective oxidation reactions on a preparative scale are feasible.

Another valuable recent development is the elucidation of a BVMO structure at atomic resolution [34]. The structure has provided valuable insight into the complex mechanism of catalysis mediated by FAD-containing BVMOs. It also allows dedicated enzyme redesign studies which will lead to engineered BVMOs with tailored biocatalytic properties.

In view of the abovementioned developments, we anticipate a bright future for BVMO-based biocatalytic applications.

References

1 Baeyer, A., Villiger, V. Einwirkung des Caro'schen Reagens auf Ketone. Ber Dtsch Chem Ges 1899, 32, 3625-3633.

2 Renz, M. and Meunier, B. 100 Years of Baeyer-Villiger oxidation of ketones. Eur J Org Chem 1999, 1, 737-750.

3 Doering, W.E., Dorfman, E. Mechanism of the peracid ketone-ester conversion. Analysis of organic compounds for oxygen-18. J Am Chem Soc 1953, 75, 5595-5598.

4 Criegee, R. Die Umlagerung der Dekalin-peroxydester als Folge von kationischem Sauerstoff. Justus Liebigs Ann. Chem 1948, 560, 127-135.

5 ten Brink, G.-J., Arends, I.W.C.E., Sheldon, R.A. The Baeyer-Villiger reaction: new developments towards greener procedures. Chem Rev 2004, 104, 4105-4123.

6 Turfitt, G.E. The microbiological degradation of steroids, Part IV. Biochem J 1948, 42, 376-383.

7 Conrad, H.E., Dubus R., Namtvedt, M.J., Gunsalus, I.C. Mixed function oxidation. II. Separation and properties of the enzymes catalyzing camphor lactonization. J Biol Chem 1965, 240, 495-503.

8 Willetts, A. Structural studies and synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol 1997, 15, 55-62.

9 Kamerbeek, N.M., Janssen, D.B., van Berkel, W.J.H. and Fraaije, M.W. Baeyer-Villiger monooxygenases, an emerging family of flavin-dependent biocatalysts. Adv Synth Catal 2003, 345, 667-678.

10 van Berkel, W.J.H., Kamerbeek, N.M., Fraaije, M.W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 2006, 124, 670-689.

11 Fraaije, M.W., Kamerbeek, N.M., van Berkel, W.J.H., Janssen, D.B. Identification of a Baeyer-Villiger monooxygenase sequence motif. FEBS Lett 2002, 518, 43-47.

12 Kostichka, K., Thomas, S.M., Gibson, K.J., Nagarajan, V., Cheng, Q.: Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus ruber SC1. J Bacteriol 2001, 183, 6478-6486.

13 Iwaki, H., Wang, S., Grosse, S., Bergeron, H., Nagahashi, A., Lertvorachon, J., Yang, J., Konishi, Y., Hasegawa, Y., Lau, P.C. Pseudomonad cyclopentadecanone monooxygenase displaying an uncommon spectrum of Baeyer-Villiger oxidations of cyclic ketones. Appl Environ Microbiol 2006, 72, 2707-2720.

14 Iwaki, H., Hasegawa, Y., Wang, S., Kayser, M.M., Lau, P.C. Cloning and characterization of a gene cluster involved in cyclopentanol metabolism in Comamonas sp. strain NCIMB 9872 and biotransformations effected by Escherichia coli-expressed cyclopentanone 1,2-monooxygenase. Appl Environ Microbiol 2002, 68, 5671-5684.

15 Chen, Y.C., Peoples, O.P., Walsh, C.T. Acinetobacter cyclohexanone monooxygenase: gene cloning and sequence determination. J Bacteriol 1988, 170, 781-789.

16 Brzostowicz, P.C., Gibson, K.L., Thomas, S.M., Blasko, M.S., Rouviere, P.E. Simultaneous identification of two cyclohexanone oxidation genes from an environmental Brevibacterium isolate using mRNA differential display.

J Bacteriol 2000, 182, 4241-4248.

17 Brzostowicz, P.C., Walters, D.M., Thomas, S.M., Nagarajan, V., Rouviere, P.E. mRNA differential display in a microbial enrichment culture: simultaneous identification of three cyclohexanone monooxygenases from three species. Appl Environ Microbiol 2003, 69, 334-342.

18 Mihovilovic, M.D., Rudroff, F., Grötzl, B., Kapitan, P., Snajdrova, R., Rydz, J. Mach, R. Family clustering of Baeyer-Villiger monooxygenases based on protein sequence and stereopreference. Angew Chem Int Ed 2005, 44, 3609-3613.

19 Wang, S., Kayser, M.M., Iwaki, H., Lau, P.C.K. Monooxygenase-catalyzed Baeyer-Villiger oxidations: CHMO versus CPMO. J Mol Catal, B Enzym 2003, 22, 211-218.

20 Kamerbeek, N.M., Moonen, M.J.H., van der Ven, J.G.M., van Berkel, W.J.H., Fraaije, M.W., Janssen, D.B. 4-Hydroxyacetophenone monooxygenase from Pseudomonasfluorescens ACB. A novel flavoprotein catalyzing Baeyer-Villiger oxidation of aromatic compounds. Eur J Biochem 2001, 268, 2547-2557.

21 Fraaije, M.W., Kamerbeek, N.M., Heidekamp, A.J., Fortin, R., Janssen, D.B. The prodrug activator EtaA from Mycobacterium tuberculosis is a Baeyer-Villiger monooxygenase. J Biol Chem 2004, 279, 3354-3360.

22 van der Werf, M.J., Swarts, H.J., de Bont, J.A.M. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl Environ Microbiol 1999, 65, 2092-2102.

23 Prado, L., Fernandez, E., Weissbach, U., Blanco, G., Quiros, L.M., Brana, A.F., Mendez, C., Rohr, J., Salas, J.A. Oxidative cleavage of premithramycin B is one of the last steps in the biosynthesis of the antitumor drug mithramycin. Chem Biol 1999, 6, 19-30.

24 Fischer, R.T., Trzaskos, J.M., Magolda, R.L., Ko, S.S., Brosz, C.S., Larsen, B. Lanosterol 14 alpha-methyl demethylase. Isolation and characterization of the third metabolically generated oxidative demethylation intermediate. J Biol Chem 1991, 266, 6124-6132.

25 Swinney, D.C., Mak, A.Y. Androgen formation by cytochrome P450 CYP17. Solvent isotope effect and pL studies suggest a role for protons in the regulation of oxene versus peroxide chemistry. Biochemistry 1994, 33, 2185-2190.

26 Carboni-Oerlemans, C., Dominguez de Maria, P., Tuin, B., Bargeman, G., van der Meer, A., van Gemert, R. Hydrolase-catalysed synthesis of peroxycarboxylic acids: Biocatalytic promiscuity for practical applications. J Biotechnol 2006, 126, 140-151.

27 Lemoult, S.C., Richardson, P.F., Roberts, S.M. Lipase-catalysed Baeyer-Villiger reactions. J. Chem Soc, Perkin Trans I 1995, 89-91.

28 Mihovilovic, M.D., Müller, B., Stanetty, P. Monooxygenase-mediated Baeyer-Villiger oxidations. Eur J Org Chem 2002, 3711-3730.

29 Donoghue, N.A., Norris, D.B., Trudgill, P.W. The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871. Eur J Biochem 1976, 63, 175192.

30 Ryerson, C.C., Ballou, D.P., Walsh, C. Mechanistic studies on cyclohexanone oxygenase. Biochemistry 1982, 21, 2644-2655.

31 Sheng, D., Ballou, D.P., Massey, V. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis. Biochemistry 2001, 40, 11156-11167.

32 Poulsen, L.L., Ziegler, D.M. Multisubstrate flavin-containing monooxygenases: applications of mechanism to specificity. Chem Biol Interact 1995, 96, 57-73.

33 van den Heuvel, R.H.H., Tahallah, N., Kamerbeek, N.M., Fraaije, M.W., van Berkel, W.J.H., Janssen, D.B., Heck, A.J. Coenzyme binding during catalysis is beneficial for the stability of 4-hydroxyacetophenone monooxygenase.

J Biol Chem 2005, 280, 32115-32121.

34 Malito, E., Alfieri, A., Fraaije, M.W., Mattevi, A. Crystal structure of a Baeyer-Villiger monooxygenase. Proc Natl Acad Sci USA 2004, 101, 13157-13162.

35 Fraaije, M.W., Wu, J., Heuts, D.P.H.M., van Hellemond, E.W., Spelberg J.H., Janssen, D.B. Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining. Appl Microbiol Biotechnol 2005, 66, 393-400.

36 Kamerbeek, N.M., Fraaije, M.W., Janssen, D.B. Identifying determinants of NADPH specificity in Baeyer-Villiger monooxygenases. Eur J Biochem 2004, 271, 2107-2116.

37 Bocola, M., Schulz, F., Leca, F., Vogel, A., Fraaije, M.W., Reetz, M.T. Converting phenylacetone monooxygenase into phenylcyclohexanone monooxygenase by rational design: towards practical Baeyer-Villiger monooxygenases. Adv Synth Catal 2005, 347, 979-986.

38 Reetz, M.T., Brunner, B., Schneider, T., Schulz, F., Clouthier, C.M., Kayser, M. M. Directed evolution as a method to create enantioselective cyclohexanone monooxygenases for catalysis in Baeyer-Villiger reactions. Angew Chem Int Ed 2004, 43, 4075-4078.

39 Reetz, M.T., Daligault, F., Brunner, B., Hinrichs, H., Deege, A. Directed evolution of cyclohexanone monooxygenases: enantioselective biocatalysts for the oxidation of prochiral thioethers. Angew Chem Int Ed 2004, 43, 4078-4081.

40 van der Werf, W. F. Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways. Biochem J 2000, 347, 693-701.

41 Kamerbeek, N.M. PhD thesis, University of Groningen, 2004.

42 Lee, D.H., Kim, M.D., Lee, W.H., Kweon, D.H., Seo, J.H. Consortium of fold-catalyzing proteins increases soluble expression of cyclohexanone monooxygenase in recombinant Escherichia coli. Appl Microbiol Biotechnol 2004, 63, 549-552.

43 Secundo, F., Zambianchi, F., Crippa, G., Carrea, G., Tedeschi, G. Comparative study of the properties of wild type and recombinant cyclohexanone monooxygenase, an enzyme of synthetic interest. J Mol Catal, B Enzym 2005, 34, 1-6.

44 van Beilen, J.B., Duetz, W.A., Schmid, A., Witholt, B. Practical issues in the application of oxygenases. Trends Biotechnol 2003, 21, 170-177.

45 Baldwin, C.V., Woodley, J.M. On oxygen limitation in a whole cell biocatalytic Baeyer-Villiger oxidation process. Biotechnol Bioeng 2006, 95, 362-369.

46 Hilker, I., Wohlgemuth, R., Alphand, V. and Furstoss, R. Microbial transformations 59: first kilogram scale asymmetric microbial Baeyer-Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy. Biotechnol Bioeng 2005, 92, 702-710.

47 Wichmann, R., Vasic-Racki, D. Cofactor regeneration at the lab scale. Adv. Biochem Eng Biotechnol 2005, 92, 225-260.

48 Lundquist, R., Olivera, B.M.: Pyridine nucleotide metabolism in Escherichia coli. I. Exponential growth. J Biol Chem 1971, 246, 1107-1116.

49 de Gonzalo, G., Ottolina, G., Carrea, G., Fraaije, M.W. [Cp*Rh(bpy)(H2O)]2+ as a coenzyme substitute in enzymatic oxidations catalyzed by Baeyer-Villiger monooxygenases. Chem Commun 2005, 29, 3724-3276.

50 Hollmann, F., Hofstetter, K., Schmid, A. Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis. Trends Biotechnol 2006, 24, 163-171.

51 Willetts, A.J., Knowles, C.J., Levitt, M.S., Roberts, S.M., Sandey, H., Shipston, N.F. Biotransformation of endo-bicyclo[2.2.1 ]heptan-2-ols and endo-bicyclo[3.2.0]hept-2-en-6-ol into the corresponding lactones. J Chem Soc, Perkin Trans. 1 1991, 6, 1608-1610.

52 Gagnon, R., Grogan, G., Levitt, M.S., Roberts, S.M., Wan, P.W.H., Willetts, A.J. Biological Baeyer-Villiger oxidation of some monocyclic and bicyclic ketones using monooxygenases from Acinetobacter calcoaceticus NCIMB 9871 and Pseudomonas putida NCIMB 10007. J Chem Soc, Perkin Trans 1 1994, 18, 2537-2543.

53 Vrtis, J.M., White, A.K., Metcalf, W.W., van der Donk, W.A. Phosphite dehydrogenase: a versatile cofactor-regeneration enzyme. Angew Chem Int Ed 2002, 41, 3257-3259.

54 Loida, P.J., Sligar, S.G. Molecular recognition in cytochrome P-450: mechanism for the control of uncoupling reactions. Biochemistry 1993, 32, 11530-11538.

55 de Gonzalo, G., Torres Pazmino, D.E., Ottolina, G., Fraaije, M.W., Carrea, G. Oxidations catalyzed by phenylacetone monooxygenase from Thermobifida fusca. Tetrahedron Asymmetry 2005, 16, 3077-3083.

56 Zambianchi, F., Pasta, P., Carrea, G., Colonna, S., Gaggero, N., Woodley, J.M. Use of isolated cyclohexanone monooxygenase from recombinant Escherichia coli as a biocatalyst for Baeyer-Villiger and sulfide oxidations. Biotechnol Bioeng 2002, 78, 489-496.

57 Atia, K.S. Co-immobilization of cyclohexanone monooxygenase and glucose-6-phosphate dehydrogenase onto polyethylenimine-porous agarose polymeric composite using y irradiation to use in biotechnological processes. Radic Phys Chem 2005, 73, 91-99.

58 Walton, A.Z., Stewart, J.D. Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Biotechnol Prog 2004, 20, 403-411.

59 de Gonzalo, G., Ottolina, G., Zambianchi, F., Fraaije, M.W., Carrea, G. Biocatalytic properties of Baeyer-Villiger monooxygenases in aqueous-organic media. J Mol Catal, B Enzym 2006, 39, 91-97.

60 Kamerbeek, N.M., Olsthoorn, A.J., Fraaije, M.W., Janssen, D.B. Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase. Appl Environ Microbiol 2003, 69, 419-426.

61 de Gonzalo, G., Torres Pazmino, D.E., Ottolina, G., Fraaije, M.W., Carrea, G. 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB as an oxidative biocatalyst in the synthesis of optically active sulfoxides. Tetrahedron Asymmetry 2006, 17, 130-135.

62 Moonen, M.J.H., Westphal, A.H., Rietjens, I.M.C.M., van Berkel, W.J.H. Enzymatic Baeyer-Villiger oxidation of benzaldehydes. Adv Synth Catal 2005, 347, 1027-1034.

63 Mihovilovic, M.D., Müller, B., Schultze, A., Stanetty, P., Kayser, M.M. An enantiodivergent trend in microbial Baeyer-Villiger oxidations of functionalized pentalenones by recombinant whole cells expressing monooxygenases from Acinetobacter and Pseudomonas. Eur J Org Chem 2003, 2243-2249.

64 Wang, S., Kayser, M.M., Iwaki, H., Lau, P.C.K. Monooxygenase-catalyzed Baeyer-Villiger oxidations: CHMO

versus CPMO. J Mol Catal, B Enzym 2003, 22, 211-218.

65 Duvick, J. Prospects for reducing fumonisin contamination of maize through genetic modification. Environ Health Perspect 2001, 109, 337-342.

66 Duvick, J.P., Maddox, J., Gilliam, J., Folkerts, O., Crasta, O.R. Compositions and methods for fumonisin detoxification. US Patent W00105980.

67 Spiering, M.J., Moon, C.D., Wilkinson, H.H., Schardl, C.L. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 2005, 169, 1403-1414.

68 Wen, Y., Hatabayashi, H., Arai, H., Kitamoto, H.K., Yabe, K.: Function of the cypX and moxY genes in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol 2005, 71, 3192-3198.

69 Baulard, A.R., Betts, J.C., Engohang-Ndong, J., Quan, S., McAdam, R.A., Brennan, P.J., Locht, C., Besra GS. Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 2000, 275, 28326-28331.

70 DeBarber, A.E., Mdluli, K., Bosman, M., Bekker, L.G., Barry, C.E. Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2000, 97, 9677-9682.

71 Frenois, F., Engohang-Ndong, J., Locht, C., Baulard, A.R., Villeret, V. Structure of EthR in a ligand bound conformation reveals therapeutic perspectives against tuberculosis. Mol Cell 2004, 16, 301-307.

72 Bonsor, D., Butz, S.F., Solomons, J., Grant, S., Fairlamb, I.J., Fogg, M.J., Grogan, G. Ligation independent cloning (LIC) as a rapid route to families of recombinant biocatalysts from sequenced prokaryotic genomes. Org Biomol Chem 2006, 4, 1252-1260.

73 Snajdrova, R., Grogan, G., Mihovilovic, M.D. Resolution of fused bicyclic ketones by a recombinant biocatalyst expressing the Baeyer-Villiger monooxygenase gene Rv3049c from Mycobacterium tuberculosis H37Rv. Bioorg Med. Chem Lett 2006, 16, 4813-4817.

Heal Yourself With Qi Gong

Heal Yourself With Qi Gong

Qigong also spelled Ch'i Kung is a potent system of healing and energy medicine from China. It's the art and science of utilizing breathing methods, gentle movement, and meditation to clean, fortify, and circulate the life energy qi.

Get My Free Ebook


Post a comment