Aldehyde Dehydrogenase Membrane Bound

Aldehyde ^ Carboxylic acid

Membrane-bound aldehyde dehydrogenase (ALDH) in acetic acid bacteria acts on a wide range of aliphatic aldehydes except for formaldehyde. Aldehydes with a carbon chain length of 2-4 are oxidized most rapidly with ALDH from both genera of Acetobacter and Gluconobacter. The enzyme is localized on the outer surface of the cytoplasmic membrane of the organisms and has a close topological and functional relation to ADH III. Aldehyde oxidation is linked to the respiratory chain as described for the alcohol oxidase system above. Thus, ALDH acts as vinegar producer sequentially after ADH III in acetic acid bacteria. During alcohol oxidation, no aldehyde liberation is observed under normal culture conditions, indicating that ADH III and ALDH form a multienzyme complex in the bacterial membrane and function sequentially to produce acetate from ethanol. As for ALDH from acetic acid bacteria, the purification and characterization of ALDH have been done with several strains [102-106].

As summarized by Matsushita et al. [1], purified ALDHs from G. suboxydans and A. aceti contain heme component, while ALDHs from A. polyoxogenes and A. rancens do not contain heme c. The subunit structures and compositions from the different sources are different. A composition of two subunits was reported, with ALDH from G. suboxydans composed of subunit I (86 kDa) and subunit II (55 kDa), A. polyoxogenes, subunit I (75 kDa) and subunit II (19 kDa), and A. rancens, subunit I (78 kDa) and subunit II (66 kDa). ALDH from A. aceti is composed of threee subunits: subunit I (78 kDa), subunit II (45 kDa), and subunit III (14 kDa). The subunit I contains the catalytic site involving a molybdoputerin cofactor as the primary coenzyme.

Purified ALDHs containing heme c from G. suboxydans [102] and A. aceti [103] are rose-red in color with absorption maxima at 551, 523, and 418 nm (reduced enzyme) and a sole peak at 410 nm (oxidized enzyme). Since the absorption spectra of ALDH is very similar to that of ADH III, ALDH was believed to be a PQQ-dependent enzyme. However, a mutant lacking the gene encoding PQQ biosynthesis still contained active ALDH, while the enzyme activity of ADH III was completely lost, indicating that the coenzyme of ALDH is not PQQ [107]. Following cloning of an ALDH-encoding gene from A. europaeus the deduced amino acid sequence indicated the presence of a molybdenum-molybdopterin cytosine dinucleotide coenzyme [108]. Molybdenum-molybdopterin cytosine dinucleotide was also indicated as the cofactor of isoquinoline 1-oxidoreductase of Pseudomonas diminuta 7 [109]. ALDH may have a similar coenzyme structure, although the final characterization of the coenzyme in ALDH has not been completed.

ALDH from A. aceti is highly stable in acidic pH as well as highly resistant to heating and more than 50% of aldehyde oxidase in the membrane fraction survived when heated at 60 °C for 30 min, while enzyme activity of ADH III was lost rapidly within a few minutes [110]. A biocatalyst composed of the ALDH-containing membranes of acetic acid bacteria is useful in eliminating off-flavors caused by various middle chain length aliphatic aldehydes that occur in foodstuffs such as wheat flour and soybean meal. When unripe cereal grains or beans are used in flour making or soybean meal production, strong off-flavors cause serious problems. Most aldehydes have a low threshold of off-flavor but once such aldehydes are oxidized to the corresponding carboxylic acids, for which the threshold is quite high, the off-flavors are decreased. Like alcohol yeasts and lactic acid bacteria, acetic acid bacteria are known to be edible microbes and produce no appreciable pathogens. Therefore, there is no problem in using cells of acetic acid bacteria carrying ALDH to improve the quality of foodstuffs. The membrane fraction containing ALDH exclusively produced by deleting ADH III by heating is also a useful enzyme for aldehyde microdetermination [110].

As for NAD (P)-independent formaldehyde dehydrogenase, the enzyme from Methylococcus capsulatus Bath purified from the membrane was shown to have PQQ as a cofactor [111]. This is the first report of the purification of NAD(P)-independent formaldehyde dehydrogenase from the membrane fraction of a methylotroph and PQQ-containing formaldehyde dehydrogenase coupled to the electron transport chain via a P-type cytochrome or quinone. The properties of this enzymes showed a number of similarities to the soluble NAD(P)-independent ALDH from Hyphomicrobium zavarzinii ZV 580 [112].

Another formaldehyde-oxidizing enzyme is the quinoprotein methanol dehy-drogenase from methylotrophic and methanotrophic bacteria [2, 113]. So far, formaldehyde dehydrogenase, including both NAD (P)-dependent and NAD(P)-independent enzymes, has been studied mainly in bacteria and yeasts that are able to grow on C1 compounds such as methane and methanol as sole carbon source. It is interesting to see that formaldehyde oxidizing ADH III has recently been found in Acetobacter sp. [114].

References

1 Matsushita, K., Toyama, H., Adachi, O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 1994, 36, 247-301.

2 Anthony, C. Methanol dehydrogenase in Gram-negative bacteria. In: Davidson, V.L., ed. Principles and Applications of Quinoproteins. New York: Marcel Dekker, 1992, 17-45.

3 Ameyama, M. Enzymic microdetermination of D-glucose, D-fructose, D-gluconate, 2-keto-D-gluconate, aldehyde, and alcohol with membrane-bound dehydrogenases. Methods Enzymol 1982, 89, 20-29.

4 Adachi, O., Shinagawa, E., Matsushita, K., Ameyama, M. Crystallization of membrane-bound alcohol dehydrogenase of acetic acid bacteria. Agric Biol Chem 1982, 46, 2859-2863.

5 Matsushita, K., Toyama, H., Yamada, M., Adachi, O. Quinoproteins: structure, function, and biotechnological applications. Appl Microbiol Biotechnol 2002, 58, 13-22.

6 Matsushita, K., Toyama, H., Adachi, O. Respiratory chains in acetic acid bacteria: Membrane-bound periplasmic sugar and alcohol respirations. In: Zannoni, D., ed. Advances in Photosynthesis and Respiration, Respiration in Archaea and Bacteria. Diversity of Prokaryotic Respiratory Systems, Vol. 16. New York: Springer, 2004, pp. 81-99.

7 Matsushita, K., Yakushi, T., Toyama, H., Shinagawa, E., Adachi, O. Function of multiple heme c moieties in intramolecular electron transport and ubiquinone reduction in the quinohemoprotein alcohol dehydrogenase-cytochrome c complex of Gluconobacter suboxydans. J Biol Chem 1996, 271, 4850-4857.

8 Matsushita, K., Takaki, Y., Shinagawa, E., Ameyama, M., Adachi, O. Ethanol oxidase respiratory chain of acetic acid bacteria. Reactivity with ubiquinone of pyrroloquinoline quinone-dependent alcohol dehydrogenases purified from Acetobacter aceti and Gluconobacter suboxydans. Biosci Biotechnol Biochem 1992, 56, 304-310.

9 Chinnawirotpisan, P., Matsushsita, K., Toyama, H., Adachi, O., Limtong, S., Theeragool, G. Purification and characterization of two NAD-dependent alcohol dehydrogenases (ADHs) induced in the quinoprotein ADH-deficient mutant of Acetobacter pasteurianus SKU 1108. Biosci Biotechnol Biochem 2003, 67, 958-965.

10 Chinnawirotpisan, P., Theeragool, G., Limtong, S., Toyama, H., Adachi, O., Matsushita, K. Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108. J Biosci Bioeng 2003, 96, 564-571.

11 Saeki, A., Matsushita, K., Takeno, S., Taniguchi, M., Toyama, H., Theeragool, G., Lotong, N., Adachi, O. Enzymes responsible for acetate oxidation by acetic acid bacteria. Biosci Biotechnol Biochem 1999, 63, 2102-2109.

12 Ikeda, T., Kobayashi, D., Matsushita, F., Sagara, T., Niki, K. Bioelectrocatalysis at electrodes coated with alcohol dehydrogenase, a quinohemoprotein with heme c serving as a built-in mediator. J Electroanal Chem 1992, 361, 820-824.

13 Yanai, H., Miki, K., Ikeda, T., Matsushita, K. Bioelectrocatalysis by alcohol dehydrogenase from Acetobacter aceti adsorbed on bare and chemically modified electrodes. Denki Kagaku 1994, 62, 1247-1248.

14 Ramanavicius, A., Habermuller, K., Csoregi, E., Laurinavicius, V., Schuhmann, W. Polypyrrol-entrapped quinohemoprotein alcohol dehydrogenase. Evidence for direct electron transfer via conducting-polymer chains. Anal Chem 1999, 71, 3581-3586.

15 Chen, Z-W., Baruch, P., Mathews, F.S., Matsushita, K., Yamashsita, T., Toyama,

H., Adachi, O. Crystallization and preliminary diffraction studies of two quinoprotein alcohol dehydrogenases (ADHs): a soluble monomeric ADH from Pseudomonas putida HK5 (ADHIIB) and a heterotrimeric membrane-bound ADH from Gluconobacter suboxydans (ADH-GS). Acta Crystallogr D 1999, 55, 1933-1936.

16 Chen, Z-W., Matsushita, K., Yamashita, T., Fujii, T., Toyama, H., Adachi, O., Bellamy, H.D., Mathews, S.F. Structure at 1.9A resolution of a quinohemoprotein alcohol dehydrogenase from Pseudomonas putida HK5. Structure 2002, 10, 837-849.

17 Toyama, H., Mathews, F.S., Adachi, O., Matsushita, K. Quinoprotein alcohol dehydrogenases: structure, function, and physiology. Arch Biochem Biophys

18 Matsushita, K., Inoue, T., Adachi, O., Toyama, H. Acetobacter aceti possesses a proton motive force-dependent efflux system for acetic acid. J Bacteriol 2005, 187, 4346-4352.

19 Frebortova, J., Matsushita, K., Arata, H., Adachi, O. Intramolecular electron transport in quinoprotein alcohol dehydrogenase of Acetobacter methanolicus: A redox-titration study. Biochim Biophys Acta 1998, 1363, 24-34.

20 Toyama, H., Fujii, A., Matsushita, K., Shinagawa, E., Ameyama, M., Adachi, O. Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J Bacteriol 1995, 177, 2442-2450.

21 Goerisch, H., Rupp, M. Quinoprotein ethanol dehydrogenase from Pseudomonas, Antonie Leeuwenhoek 1989, 56, 35-45.

22 Toyama, H., Chen, Z.W., Fukumoto, M., Adachi, O., Matsushita, K., Mathews, F.S. Molecular cloning and structural analysis of quinoprotein alcohol dehydrogenase ADH-IIG from Pseudomonas putida HK5. J Mol Biol

23 Donoghue, N.A., Trudgill, P.W. The metabolism of cyclohexanol by

Acinetobacter NCIB 9871. Eur J Biochem 1975, 60, 1-7.

24 Tanaka, H., Obata, H., Tokuyama, T., Ueno, T., Yoshizako, F., Nishimura, A. Metabolism of cyclohexanol by Pseudomonas sp. Hakko Kogaku. 1977, 55, 62-67 (in Japanese).

25 Dangel, W., Tschech, A., Fuchs, G. Enzyme reactions involved in anaerobic cyclohexanol metabolism by a denitrifying Pseudomonas species. Arch Microbiol 1989, 152, 273-279.

26 Cheng, Q., Thomas, S.M., Kostichka, K., Valentine, J.R., Nagarajan, V. Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 in vitro transposition.

J Bacteriol 2000, 182, 4744-4751.

27 Griffin, M., Trudgill, P.W. The metabolism of cyclopentanol by Pseudomonas N.C.I.B. 9872, Biochem J 1972, 129, 595-603.

28 Suzuki, T. Purification and some properties of polyvinyl alcohol-degrading enzyme produced by Pseudomonas O-3. Agric Biol Chem 1976, 40, 497-504.

29 Suzuki, T. Oxidation of secondary alcohols by polyvinyl alcohol-degrading enzyme produced by Pseudomonas O-3. Agric Biol Chem 1978, 42, 1187-1194.

30 Morita, M., Hamada, N., Sakai, K., Watanabe, Y. Purification and properties of secondary alcohol oxidase from a strain of Pseudomonas. Agric Biol Chem 1979, 43, 1125-1235.

31 Moonmangmee, D., Fujii, Y., Toyama, H., Theeragool, G., Lotong, N., Matsushita, K., Adachi, O. Purification and characterization of membrane-bound cyclic alcohol dehydrogenase from Gluconobacter frateurii CHM 9. Biosci Biotechnol Biochem 2001, 65, 2763-2772.

32 Hauge, J.G. Purification and properties of glucose dehydrogenase and cytochrome b from Bacterium anitratum. Biochim Biophys Acta 1960, 45, 250-262.

33 Hauge, J.G. Mode of action of glucose dehydrogenase from Bacterium anitratum. Arch Biochem Biophys 1961, 94, 308-318.

34 Hauge, J.G. Glucose dehydrogenase of Bacterium anitratum: an enzyme with a novel prosthetic group. J Biol Chem 1964, 239, 3630-3639.

35 Hauge, J.G. Solubilization and properties of the structurally-bound glucose dehydrogenase of Bacterium anitratum. Biochim Biophys Acta 1964, 81, 251-256.

36 Duine, J.A., Frank, Jr., J., van Zeeland, J.K. Glucose dehydrogenase from Acinetobacter calcoaceticus: a "quinoprotein". FEBS Lett 1979, 108, 443-446.

37 Matsushita, K., Shinagawa, E., Inoue, T., Adachi, O., Ameyama, M. Immunological evidence for two types of PQQ-dependent D-glucose dehydrogenase in bacterial membranes and the location of the enzyme in Escherichia coli. FEMS Microbiol Lett 1986, 37, 141-144.

38 Matsushita, K., Shinagawa, E., Inoue, T., Adachi, O., Ameyama, M. Immunological evidence for two types of PQQ-dependent D-glucose dehydrogenase in bacterial membranes and the location of the enzyme in Escherichia coli. FEMS Microbiol Lett 1988, 55, 53-58.

39 Matsushita, K., Shinagawa, E., Adachi, O., Ameyama, M. Quinoprotein D-glucose dehydrogenase of the Acinetobacter calcoaceticus respiratory chain: membrane-bound and soluble forms are different molecular species. Biochemistry 1989, 28, 6276-6280.

40 Ameyama, M., Shinagawa, E., Matsushita, K., Adachi, O. D-Glucose dehydrogenase of Gluconobacter suboxydans. Solubilization, purification and characterization. Agric Biol Chem 1981, 45, 851-861.

41 Ameyama, M., Nonobe, M., Shinagawa, E., Matsushita, K., Adachi, O. Purification and characterization of the quinoprotein D-glucose dehydrogenase apoenzyme from Escherichia coli. Agric Biol Chem 1986, 50, 49-57.

42 Yamada, M., Sumi, K., Matsushita, K., Adachi, O., Yamada, Y. Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J Biol Chem 1993, 268, 12812-12817.

43 Yamada, M., Elias, M.D., Matsushita, K., Migita, T.C., Adachi, O. Escherichia coli PQQ-containing quinoprotein glucose dehydrogenase: its structure comparison with other quinoproteins. Biochim Biophys Acta 2003, 1647, 185-192.

44 Miyoshi, H., Niitome, Y., Matsushita, K., Yamada, M., Iwamura, H. Topographical characterization of the ubiquinone reduction site of glucose dehydrogenase in Escherichia coli using depth-dependent fluorescent inhibitors. Biochim Biophys Acta 1999, 1412, 29-36.

45 Elias, M.D., Tanaka, M., Sakai, M., Toyama, H., Matsushita, K., Adachi, O., Yamada, M. C-terminal periplasmic domain of Escherichia coli quinoprotein glucose dehydrogenase fransfers electrons to ubiquinone. J Biol Chem 2001, 276, 48356-48361.

46 Elias, M.D., Nakamura, S., Migita, C.T., Miyoshi, H., Toyama, H., Matsushita, K., Adachi, O., Yamada, M. Occurrence of a bound ubiquinone and its function in Escherichia coli membrane-bound quinoprotein glucose dehydrogenase.

J Biol Chem 2004, 279, 3078-3083.

47 D'Costa, E.J., Higgins, I.J., Turner, A.P. Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors 1986, 2, 71-87.

48 Laurinavicius, V., Kurtuinatiene, B., Liauksminas, V., Ramanavicius, A., Meskys, R., Rudomanskis, R. Oxygen insensitive glucose biosensor based on PQQ-dependent glucose dehydrogenase. Anal Lett 1999, 32, 299-316.

49 Yamazaki, T., Kojima, K., Sode, K. Extended-range glucose sensor employing engineered glucose dehydrogenase. Anal Chem 2000, 72, 4689-4693.

50 Adachi, O., Fujii, Y., Ano, Y., Moonmangmee, D., Toyama, H., Shinagawa, E., Theeragool, G., Lotong, N., Matsushita, K. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Biosci Biotechnol Biochem 2001, 65, 115-125.

51 Adachi, O., Fujii, Y., Ghaly, F.M., Toyama, H., Shinagawa, E., Matsushita, K. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257, A versatile enzyme for the oxidative fermentation of various ketoses. Biosci Biotechnol Biochem 2001, 65, 2755-2762.

52 Hann, M.R., Tilden, B.E., Hudson, C.S. The oxidation of sugar alcohols by Acetobacter suboxydans. J Am Chem Soc 1938, 60, 1201-1203.

53 Ameyama, M., Shinagawa, E., Matsushita, K., Adachi, O. Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agric Biol Chem 1985, 49, 1001-1010.

54 Sugisawa, T., Hoshino, T. Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem 2002, 66, 57-64.

55 Ameyama, M., Adachi, O. 5-Keto-D-gluconate reductase from Gluconobacter suboxydans. Methods Enzymol 1982, 89, 198-202.

56 Ameyama, M., Adachi, O . 2-Keto-D-gluconate reductase from acetic acid bacteria. Methods Enzymol 1982, 89, 203-210.

57 Bertrand, G. Novel preparation of L-erythrulose by meso-erythritol dehydrogenation. C R Seances Acad Sci 1900, 130, 1472-1475.

58 Whistler, R.L., Underkofler, L.A. The production of L-erythrulose by the action of Acetobacter suboxydans upon erythritol. J Am Chem Soc 1938, 60, 2507-2508.

59 Moonmangmee, D., Shinagawa, E., Toyama, H., Theeragool, G., Lotong, N., Matsushita, K., Adachi, O. L-Erythrulose production by oxidative fermentation is catalyzed by PQQ-containing membrane-bound dehydrogenase. Biosci Biotechnol Biochem 2002, 66, 307-318.

60 Asai, T. Oxidation of monosaccharides. In: Asai, T., ed. Acetic Acid Bacteria. Tokyo: University of Tokyo Press, 1968, pp. 178-203.

61 Matsushita, K., Fujii, K., Ano, Y., Toyama, H., Shinjoh, M., Tomiyama, N., Miyazaki, T., Hoshino, T., Adachi, O. 5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter sp. Appl Environ Microbiol 2003, 69, 1959-1966.

62 Gray, G.E. Preparation of 2-keto gulonic acid and its salts. US Patent 2,421,611, 1945.

63 Gray, G.E. Preparation of 2-keto gulonic acid and its salts. US Patent 2,421,612, 1945.

64 Fulmer, E.I., Dunning, J.W., Underkofler, L.A. The effect of the concentration of mannitol upon the production of levulose by the action of Acetobacter suoxydans. Iowa State Coll J Sci 1939, 13, 279-281.

65 Arcus, A.C., Edson, N.L. Polyol dehydrogenases. 2. The polyol dehydrogenases of Acetobacter suboxydans and Candida utilis. Biochem J 1956, 64, 385-394.

66 Moonmangmee, D., Adachi, O., Ano, Y., Shinagawa, E., Toyama, H., Theeragool, G., Lotong, N., Matsushita, K. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci Biotechnol Biochem 2000, 64, 2306-2315.

67 Shinagawa, E., Matsushita, K., Adachi, O., Ameyam, M. Purification and characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. a. Agric Biol Chem 1982, 46, 135-141.

68 Adachi, O., Toyama, H., Theeragool, G., Lotong, N., Matsushita, K. Crystallization and properties of NAD-dependent D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3257, Biosci Biotechnol Biochem 1999, 63, 1589-1595.

69 Adachi, O., Ano, Y., Moonmangmee, D., Shinagawa, E., Toyama, H., Theeragool,

G., Lotong, N., Matsushita, K. Crystallization and properties of NADPH-dependent L-sorbose reductase from Gluconobacter melanogenus IFO 3294. Biosci Biotechnol Biochem 1999, 63, 2137-2143.

70 Asakura, A., Hoshino, T. Isolation and characterization of a new quinoprotein dehydrogenase, L-sorbose/L-sorbosone dehydrogenase. Biosci Biotechnol Biochem 1999, 63, 46-53.

71 Saito, Y., Ishii, Y., Hayashi, H., Imao, Y., Akashi, T., Yoshimasa, K., Noguchi, Y., Soeda, S., Yoshida, M., Niwa, M., Hosoda, J., Shimomura, K. Cloning of the genes coding for L-sorbose and L-sorbosone dehydrogenase from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain.

Appl Environ Microbiol 1997, 63, 454-460.

72 Shinjoh, M., Tomiyama, N., Asakura, A., Hoshino, T. Cloning and nucleotide sequencing of the membrane-bound L-sorbosone dehydrogenase gene of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans. Appl Environ Microbiol 1995, 61, 413-420.

73 Sugisawa, T., Ojima, S., Matzinger, P.K., Hoshino, T. Isolation and characterization of a new vitamin C producing enzyme (L-gulono-lactone dehydrogenase) of bacterial origin. Biosci Biotechnol Biochem 1995, 59, 190-196.

74 Sugisawa, T., Miyazaki, T., Hoshino, T. Microbial production of L-ascorbic acid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigenium vulgare DSM 4025. Biosci Biotechnol Biochem 2005, 69, 659-662.

75 Miyazaki, T., Sugisawa, T., Hoshino, T. Pyrroloquinoline quinone-dependent dehydrogenases from Ketogulonicigenium vulgare catalyze the direct conversion of L-sorbosone to L-ascorbic acid. Appl Environ Microbiol 2006, 72, 1487-1495.

76 Whiting, G.C., Coggins, R.A. The oxidation of D-quinate and related acids by Acetomonas oxydans. Biochem J 1967, 102, 283-293.

77 van Kleef, M.A.G., Duine, J.A. Bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein. Arch Miocrobiol 1988, 150, 32-36.

78 Adachi, O., Yoshihara, N., Tanasupawat, S., Toyama, H., Matsushita, K. Purification and characterization of membrane-bound quinoprotein quinate dehydrogenase. Biosci Biotechnol Biochem 2003, 67, 2115-2123.

79 Vangnai, A.S., Toyama, H., De-eknamkul, W., Yoshihara, N., Adachi, O., Matsushita, K. Quinate oxidation in Gluconobacter oxydans IFO3244: purification and characterization of quinoprotein quinate dehydrogenase. FEMS Microbiol Lett 2004, 241, 157-162.

80 Adachi, O., Moonmangmee, D., Toyama, H., Yamada, M., Shinagawa, E., Matsushita, K. New quinoproteins in oxidative fermentation. Biochim Biophys Acta 2003, 1647, 10-17.

81 Adachi, O., Moonmangmee, D., Toyama, H., Yamada, M., Shinagawa, E., Matsushita, K. New developments in oxidative fermentation. Appl Microbiol Biotechnol 2003, 60, 643-653.

82 Adachi, O., Tanasupawat, S., Yoshihara, N., Toyama, H., Matsushita, K. 3-Dehydroquinate production by oxidative fermentation and further conversion of 3-dehydroquinate to the intermediates in the shikimate pathway. Biosci Biotechnol Biochem 2003, 67, 2124-2131.

83 Adachi, O., Ano, Y., Toyama, H., Matsushita, K. High shikimate production from quinate with two enzymatic systems of acetic acid bacteria. Biosci Biotechnol Biochem 2006, 70, 2579-2582.

84 Adachi, O., Ano, Y., Toyama, H., Matsushita, K. Purification and properties of shikimate dehydrogenase from Gluconobacter oxydans IFO 3244 and its application to enzymatic shikimate production. Biosci Biotechnol Biochem 2006, 70, 2786-2789.

85 Adachi, O., Ano, Y., Toyama, H., Matsushita, K., Enzymatic preparation of metabolic intermediates, 3-dehydroquinate and

3-dehydroshikimate, in the shikimate pathway. Biosci Biotechnol Biochem 2006, 70, 3081-3083.

86 Ameyama, M., Shinagawa, E., Matsushita, K., Adachi, O. D-Fructose dehydrogenase of Gluconobacter industrius: Purification, characterization and application to enzymatic microdetermination of D-fructose. J Bacteriol 1981, 145, 814-823.

87 Bent, E., Bergmeyer, H.U. D-Fructose. Methods Enzymatic Anal 1974,

88 Nakashima, K., Takei, H., Adachi, O., Shinagawa, E., Ameyama, M. Determination of seminal fructose using D-fructose dehydrogenase. Clin Chim Acta 1985, 151, 307-310.

89 Matsushita, K., Shinagawa, E., Adachi, O., Ameyama, M. Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Purification and structure of cytochrome-binding form. J Biochem 1979, 85, 1173-1181.

90 Matsushita, K., Shinagawa, E., Adachi, O., Ameyama, M. Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Its kinetic properties and a reconstitution of gluconate oxidase. J Biochem 1979, 86, 249-256.

91 Matsushita, K., Yamada, M., Shinagawa, E., Adachi, O., Ameyama, M. Function of ubiquinone in the electron transport system of Pseudomonas aeruginosa grown aerobically. J Biochem 1980, 88, 757-764.

92 Shinagawa, E., Matsushita, K., Adachi, O., Ameyama, M. Membrane-bound D-gluconate dehydrogenase of Serratia marcescens. Purification and properties. Agric Biol Chem 1978, 42, 2355-2361.

93 McIntire, W., Singer, T.P., Ameyama, M., Adachi, O., Matsushita, K., Shinagawa, E. Identification of the covalently bound flavins of D-gluconate dehydrogenase from Pseudomonas aeruginosa and Pseudomonas fluorescens and of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus. Biochem J 1985, 231, 651-654.

94 Ameyama, M., Tayama, K., Shinagawa, E., Matsushita, K., Adachi, O. New enzymatic determination of gluconate with particulate D -gluconate dehydrogenase. Agric Biol Chem 1978, 42, 2347-2354.

95 Moonmangmee, D., Adachi, O., Toyama, H., Matsushita, K. D-Hexosaminate production by oxidative fermentation. Appl Biotechnol Microbiol 2004, 66, 253-258.

96 Takahashi, K., Kayamori, H. Studies on the formation of glucosaminic acid by Acetobacter melanogenum Beijerinck and Pseudomonas fluorescens. Bull Agric Chem Soc Jpn 1960, 24, 231-234.

97 Takiguchi, Y., Shiina, A., Yamaguchi, T.T. Bioconversion of D-glucosamine to D-glucosaminic acid. Nippon Nogeikagaku Kaishi 2003, 77, 576-578 (in Japanese).

98 Iwamoto, R., Imanaga, Y., Purification and characterization of D-glucosaminate dehydratase from Pseudomonas fluorescens. Agric Biol Chem 1989, 53, 2563-2569.

99 Shinagawa, E., Matsushita, K., Adachi, O., Ameyama, M. Purification and characterization of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus. Agric Biol Chem 1981, 45, 1079-1085.

100 Sonoyama, T., Tani, H., Matsuda, K., Kageyama, B., Tanimoto, M., Kobayashi, K., Yagi, S., Kyotani, H., Mitsushima, K. Production of 2-keto-L-gulonic acid from D-glucose by two-stage fermentation. Appl Environ Microbiol 1982, 43, 1064-1069.

101 Kondo, K., Ameyama, M. Carbohydrate metabolism of Acetobacter species. III. Isolation and identification of D-lyxuronic acid produced from glucose by Acetobacter melanogenum. Bull Agric Chem Soc Jpn 1958, 22, 380-386.

102 Adachi, O., Tayama, K., Shinagawa, E., Matsushita, K., Ameyama, M. Purification and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 1980, 44, 503-515.

References | 41 109 Lehmann, M., Tshisuaka, B., Fetzner, S.,

E., Matsushita, K., Adachi, O. Purification and characterization of aldehyde dehydrogenase of Acetobacter aceti. Agric Biol Chem 1981, 45, 1889-1890.

104 Muraoka, H., Watanabe, Y., Ogasawara, N., Takahashi, H. Purification and properties of coenzyme-independent aldehyde dehydrogenase from the membrane fraction of Acetobacter aceti. J Ferment Technol 1981, 59, 247-255.

105 Fukaya, M., Tayama, K., Okumura, H., Kawamura, Y., Beppu, T. Purification and characterization of membrane-bound aldehyde dehydrogenase from Acetobacter polyoxogenes sp. nov. Appl Microbiol Biotechnol 1989, 32, 176-180.

106 Hommel, R., Kleber, H.P. Properties of the quinoprotein aldehyde dehydrogenase from "Acetobacter rancens". J Gen Microbiol 1990, 136, 1705-1711.

107 Takemura, H., Tsuchida, T., Yoshinaga,

F., Matsushita, K., Adachi, O. Prosthetic group of aldehyde dehydrogenase in acetic acid bacteria not pyrroloquinoline quinone. Biosci Biotechnol Biochem 1994, 58, 2082-2083.

108 Turner, C., Vela, C., Thony-Meyer, L., Meile, L., Teuber, M. Biochemical and genetic characterization of the acetaldehyde dehydrogenase complex from Acetobacter europaeus. Arch Microbiol 1997, 168, 81-91.

Lingens, F. Molecular cloning of the isoquinoline 1-oxidoreductase genes from Pseudomonas diminuta 7, structural analysis of IorA and IorB, and sequence comparisons with other molybdenum-containing hydroxylases. J Biol Chem 1995, 270, 14420-14429.

110 Adachi, O., Shinagawa, E., Matsushita, K., Ameyama, M. Preparation of cells and cytoplasmic membrane of acetic acid bacteria which exclusively contain quinoprotein aldehyde dehydrogenase. Agric Biol Chem 1988, 52, 2083-2084.

111 Zahn, J.A., Bergman, D.J., Boyd, J.M., Kunz, R.C., Dispirito, A.A. Membrane-assocciated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath. J Bacteriol 2001, 183, 6832-6840.

112 Klein, C.R., Kesseler, F.P., Perrei, C., Frank, J., Duine, J.A., Schwartz, A.C. A novel dye-linked formaldehyde dehydrogenase with some properties indicating the presence of a protein-bound redox-active quinone cofactor. Biochem J 1994, 301, 289-295.

113 Colby, J., Dalton, H., Whittenbury, R. Biological and biochemical aspects of microbial growth on C1 compounds. Annu Rev Microbiol 1979, 33, 481-517.

114 Shinagawa, E., Toyama, H., Matsushita, K., Tuitemwong, P., Theeragool, G., Adachi, O. A novel type of formaldehyde-oxidizing enzyme from the membrane of Acetobacter sp. SKU 14. Biosci Biotechnol Biochem 2006, 70, 850-857.

Heal Yourself With Qi Gong

Heal Yourself With Qi Gong

Qigong also spelled Ch'i Kung is a potent system of healing and energy medicine from China. It's the art and science of utilizing breathing methods, gentle movement, and meditation to clean, fortify, and circulate the life energy qi.

Get My Free Ebook


Post a comment