References

1. Simmons, F. B., Electrical stimulation of the auditory nerve in man, Archives of Otolaryngology — Head and Neck Surgery, 84, 24, 1966.

2. Djourno, A. and Eyries, C. H., Prothese auditive par excitation electrique a distance du nerf sensoriel a l'aide d'un bobinage inclus a demeure, La Presse Medicale, 65, 1417, 1957.

3. Doyle, J. H., Doyle, J. B., and Turnbull, F. M., Electrical stimulation of eighth cranial nerve, Archives of Otolaryngology — Head and Neck Surgery, 80, 388, 1964.

4. House, W. F. and Urban, J., Long term results of electrode implantation and electronic stimulation of the cochlea in man, Annals of Otology, Rhinology and Laryngology, 82, 504, 1973.

House, W. F. and Berliner, K. I., Safety and efficacy of the House/3M cochlear implant in profoundly deaf adults, Otolaryngologic Clinics of North America, 19, 275, 1986. Simmons, F. B., Epley, J. M., Lummis, R. C., Guttman, N., Frishkopf, L. S., Harmon, L. D., and Zwicker, E., Auditory nerve: Electrical stimulation in man, Science, 148, 104, 1965.

Michelson, R. P., Electrical stimulation of the human cochlea: A preliminary report, Archives of Otolaryngology — Head and Neck Surgery, 93, 317, 1971. Merzenich, M. M., Schindler, D. N., and White, M. W., Feasibility of multichannel scala tympani stimulation, Laryngoscope, 84, 1887, 1974.

Schindler, R. S., Kessler, D. K., and Rebscher, S. J., The University of California, San Francisco/Storz Cochlear Implant Program, Otolaryngology Clinics of North America, 19, 287, 1986.

Schindler, R. A. and Kessler, D. K., Clarion cochlear implant: Phase I investigational result, American Journal of Otology, 14, 263, 1993.

Kessler, D. K., The CLARION® Multi-Strategy cochlear implant, Annals of Otology, Rhinology and Laryngology, 108, 8, 1999.

Clark, G. M., Blamey, P. J., Brown, A. M., Gusby, P. A., Dowell, R. C., Franz, B. K., Pyman, B. C., Shepherd, R. K., Tong, Y. C., Webb, R. L., Hirshorn, M. S., Kuzma, J., Mecklenburg, M. J., Money, D. K., Patrick, J. F., and Seligman, P. M., The University of Melbourne — Nucleus multi-electrode cochlear implant, Advances in Oto-Rhino-Laryngology, 38, 1, 1987.

Douek, E., Fourcin, A. J., Moore, B. C. J., and Clarke, G. P., A new approach to the cochlear implant, Proceedings of the Royal Society of London Series B: Biological Sciences, 70, 379, 1977.

Eddington, D. K., Dobelle, W. H., Brackmann, D. E., Mladejovsky, M. G., and Parkin, J. L., Auditory prosthesis research with multiple channel intracochlear stimulation in man, Annals of Otology, Rhinology and Laryngology, 87, 1, 1978. Parkin, J. L., Randolph, L. J., and Parkin, B. D., Multichannel (Ineraid®) cochlear implant update, Laryngoscope, 103, 835, 1993.

Hochmair-Desoyer, I. J., Results from better postlingual adult users of the MED-EL devices, in Advances in Cochlear Implants, Hochmair-Desoyer, I. J. and Hochmair, E. S., Eds., Manz, Vienna, 1994, 363.

Helms, J., Muller, J., Schon, F., Moser, L., Arnold, W., Janssen, T., Ramsden, R., vonIlberg, C., Kiefer, J., Pfennigdorf, T., Gstottner, W., Baumgarter, W., Ehrenberger, K., Skarzynski, H., Ribari, O., Thumfart, W., Stephan, K., Mann, W., Heinemann, M., Zorowka, P., Lippert, K. L., Zenner, H. P., Bohndorf, M., Huttenbrink, K., and Muller-Ascoff, E., Evaluation of performance with the COMBI 40 cochlear implant in adults. A multicentric clinical study, ORL-Journal for Oto-Rhino-Laryngology and Its Related Specialties, 59, 23, 1997.

Zierhofer, C. M., Hochmair, I. J., and Hochmair, E. S., The advanced Combi 40+ cochlear implant, American Journal of Otology, 18, S37, 1997. Chouard, C. H., The Digisonic from MXM, Advances in Otorhinolaryngology, 52, 258, 1997.

Peeters, S., Marquet, J., Offeciers, F. E., Bosiers, W., Kinsbergen, J., and Van Durme, M., Cochlear implants: the Laura prosthesis, Journal of Medical Engineering and Technology, 13, 76, 1989.

Peeters, S., Offeciers, E., Kinsbergen, J., van Durme, M., van Enis, P., Dijkmans, P., and Bouchataoui, I., A digital speech processor and various speech encoding strategies for cochlear implants, Progress in Brain Research, 97, 283, 1993.

Hinojosa, R. and Marion, M., Histopathology of profound sensorineural deafness, Annals of the New York Academy of Sciences, 405, 459, 1983. Suzuka, Y. and Schuknecht, H. F., Retrograde cochlear neuronal degeneration in human subjects, Acta Oto-Laryngologica (Stockholm), S450, 1, 1988. Brackmann, D. E., Hitselberger, W. E., Nelson, R. A., Moore, J., Waring, M. D., Portillo, F., Shannon, R. V., and Telischi, F. F., Auditory brainstem implant. I. Issues in surgical implantation, Otolaryngology — Head and Neck Surgery, 108, 624, 1993. Shannon, R. V., Fayad, J., Moore, J., Lo, W. W. M., Otto, S., Nelson, R. A., and O'Leary, M., Auditory brain-stem implant. II. Postsurgical issues and performance, Otolaryngology — Head and Neck Surgery, 108, 634, 1993.

Anderson, D. J., Najafi, K., Tanghe, S. J., Evans, D. A., Levy, K. L., Hetke, J. F., Xue, X., Zappia, J. J., and Wise, K. D., Batch-fabricated thin-film electrodes for stimulation of the central auditory system, IEEE Transactions on Biomedical Engineering, BME-36, 1206, 1989.

Niparko, J. K., Altschuler, R. A., Xue, X., Wiler, J. A., and Anderson, D. J., Surgical implantation and biocompatibility of central nervous system auditory prostheses, Annals of Otology, Rhinology and Laryngology, 98, 965, 1989. Evans, D. E., Niparko, J. K., Miller, J. M., Jyung, R. W., and Anderson, D. J., Multiple channel stimulation of the cochlear nucleus, Otolaryngology — Head and Neck Surgery, 101, 651, 1989.

Zappia, J. J., Hetke, J. F., Altschuler, R. A., and Niparko, J. K., Evaluation of a siliconsubstrate modiolar eighth nerve implant in a guinea pig, Otolaryngology — Head and Neck Surgery, 103, 575, 1990.

Jones, D., Arts, H., Bierer, S., Hetke, J., and Anderson, D., Development of an implantable auditory nerve prosthesis, Otolaryngology — Head and Neck Surgery, Submitted. Bell, T., Wise, K., and Anderson, D., A flexible micromachined electrode array for a cochlear prosthesis, Sensors and Actuators A: Physical, 66, 63, 1998. Gantz, B. J., Tyler, R. S., Knutson, J. F., Woodworth, G., Abbas, P., McCabe, B. F., Hinrichs, J., Tye-Murray, N., Lansing, C., Kuk, F., and Brown, C., Evaluation of five different cochlear implant designs: audiologic assessment and predictors of performance, Laryngoscope, 98, 1100, 1988.

Skinner, M. W., Clark, G. M., Whitford, L. A., Seligman, P. M., Staller, S. J., Shipp, D. B., Shallop, J. K., Everingham, C., Menapace, C. M., Arndt, P. L., Antogenelli, T., Brimacombe, J. A., Pijl, S., Daniels, P., George, C. R., McDermott, H. J., and Beirer, A. L., Evaluation of a new spectral peak coding strategy for the Nucleus 22 channel cochlear implant system, American Journal of Otology, 15, 15, 1994. Battmer, R., P, H., Zilberman, Y., and Lenarz, T., Simultaneous analog stimulation (SAS)-continuous interleaved sampler (CIS) pilot comparison study in Europe, Annals of Otology, Rhinology and Laryngology, 108, 69, 1999. Osberger, M., SAS-CIS preference study in postlingually deafened adults implanted with the Clarion cochlear implant, Annals of Otology, Rhinology and Laryngology, 108, 74, 1999.

Pfingst, B. E., Zwolan, T. A., and Holloway, L. A., Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants, Hearing Research, 112, 247, 1997.

Gfeller, K. and Lansing, C. R., Melodic, rhythmic, and timbral perception of adult cochlear implant users, Journal of Speech and Hearing Research, 34, 916, 1991. Fujita, S. and Ito, J., Ability of Nucleus cochlear implantees to recognize music, Annals of Otology, Rhinology and Laryngology, 108, 634, 1999.

Cohen, N. L., Hoffman, R. A., and Stroschein, M., Medical or surgical complications related to the Nucleus multichannel cochlear implant, Annals of Otology, Rhinology and Laryngology, 97, 8, 1988.

Hoffman, R. A. and Cohen, N. L., Complications of cochlear implant surgery, Annals of Otology, Rhinology & Laryngology, 104 (Supp 166), 420, 1995. Shepherd, R. K., Clark, G. M., and Black, R. C., Chronic electrical stimulation of the auditory nerve in cats. Physiological and histopathological results, Acta Oto-Laryngologica (Stockholm), S399, 19, 1983.

Leake, P. A., Rebscher, S. J., and Aird, D. W., Histopathology of cochlear implants: safety considerations., in Cochlear Implants, Schindler, R. A. and Merzenich, M. M., Eds., Raven Press, New York, 1985, 55.

Brummer, S. B. and Turner, M. J., Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes, IEEE Transactions on Biomedical Engineering, 24, 59, 1977.

Robblee, L. S. and Rose, T. L., Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation, in Neural Prostheses: Fundamental Studies, Agnew, W. F. and McCreery, D. B., Eds., Prentice Hall, Englewood Cliffs, NJ, 1990,

Agnew, W. F., McCreery, D. B., Yuen, T. G. H., and Bullara, L. A., Local anaesthetic block protects against electrically-induced damage in peripheral nerve, Journal of Biomedical Engineering, 12, 301, 1990.

Huang, C. Q. and Shepherd, R. K., Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. IV. Effects of stimulus intensity, Hearing Research, 132, 60, 1999.

Donaldson, N. D. N. and Donaldson, P. E. K., When are actively balanced biphasic ('Lilly') stimulating pulses necessary in a neurological prosthesis? I. Historical background; Pt resting potential; Q studies, Medical and Biological Engineering and Computing, 24, 41, 1986.

Kompis, M. and Dillier, N., Noise reduction for hearing aids: combining directional microphones with an adaptive beamformer, Journal of the Acoustical Society of America, 96, 1910, 1994.

Hamacher, V., Doering, W. H., Mauer, G., Fleischmann, H., and Hennecke, J., Evaluation of noise reduction systems for cochlear implant users in different acoustic environment, American Journal of Otology, 18, 46, 1997.

Elberling, C., Ludvigsen, C., and Keidser, G., The design and testing of a noise reduction algorithm based on spectral subtraction, Scandinavian Audiology Supple-mentum, 38, 39, 1993.

Fretz, R. and Fravel, R., A physical and electrical description of the 3M/House cochlear implant system, Ear and Hearing, 6, 145, 1985.

Hochmair-Desoyer, I. J., Hochmair, E. S., Burian, K., and Fischer, R. E., Four years of experience with cochlear prostheses, Medical Progress Through Technology, 8, 107, 1981.

Tyler, R. S., Open-set word recognition with the 3M/Vienna single-channel cochlear implant, Archives of Otolaryngology — Head and Neck Surgery, 114, 1123, 1988. Skinner, M. W., Holden, L. K., Holden, T. A., Dowell, R. C., Seligman, P. M., Brimacombe, J. A., and Beiter, A. L., Performance of postlinguistically deaf adults with the wearable speech processor (WSP III) and mini speech processor (MSP) of the Nucleus multi-electrode cochlear implant, Ear and Hearing, 12, 3, 1991. Shannon, R. V., Zeng, F.-G., Kamath, V., Wygonski, J., and Ekelid, M., Speech recognition with primarily temporal cues, Science, 270, 303, 1995.

Dorman, M. F., Loizou, P. C., and Rainey, D., Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs, Journal of the Acoustical Society of America, 102, 2403, 1997. Dudley, H., The vocoder, Bell Labs Record, 17, 122, 1939.

Hill, F. J., McRae, L. P., and McClellan, R. P., Speech recognition as a function of channel capacity in a discrete set of channels, Journal of the Acoustical Society of America, 44, 13, 1968.

Villchur, E., Electronic models to simulate the effect of sensory distortions on speech perception by the deaf, Journal of the Acoustical Society of America, 62, 665, 1977. Zollner, V. M., Intelligiblity of the speech of a simple vocoder, Acustica, 43, 271, 1979.

Dorman, M. F., Loizou, P. C., Fitzke, J., and Tu, Z., The recognition of sentences in noise by normal-hearing listeners using simulations of cochlear-implant signal processors with 6-20 channels, Journal of the Acoustical Society of America, 104, 3583, 1998. Eisenberg, L. S., Shannon, R. V., Martinez, A. S., and Wygonski, J., Do children require a greater number of spectral channels than adults to understand speech, in Association for Research in Otolaryngology Abstracts, Popelka, G. R., Ed. Association for Research in Otolaryngology, Mt. Royal, NJ, 1999, 71. Fishman, K. E., Shannon, R. V., and Slattery, W. H., Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor, Journal of Speech, Language, and Hearing Research, 40, 1201, 1997. Friesen, L. M., Shannon, R. V., and Slattery, W. H., Speech recognition in noise as a function of the number of electrodes used in the SPEAK, SAS and CIS speech processors, Conference on Implantable Auditory Prostheses, Pacific Grove, CA, 119, 1999.

Dorman, M. F., Loizou, P. F., Poroy, O., Spahr, T., and Maloff, E., The effect of intensity quantizing on the intelligibility of speech transmitted by signal processors using a small number of output channels, Conference on Implantable Auditory Pros-theses, Pacific Grove, CA, 117, 1999.

Wilson, B. S., Finley, C. C., Lawson, D. T., Wolford, R. D., Eddington, D. K., and Rabinowitz, W. M., Better speech recognition with cochlear implants, Nature, 352, 236, 1991.

Kompis, M., Vischer, M. W., and Hausler, R., Performance of Compressed Analogue (CA) and Continuous Interleaved Sampling (CIS) coding strategies for cochlear implants in quiet and noise, Acta Oto Laryngologica, 119, 659, 1999. Peeters, S., Offeciers, F. E., Joris, P., and Moeneclaey, L., The Laura cochlear implant programmed with the continuous interleaved and phase-locked continuous interleaved strategies, Advances in Oto-Rhino-Laryngology, 48, 261, 1993. Rosen, S., Temporal information in speech: acoustic, auditory and linguistic aspects, Philosophical Transactions of the Royal Society of London, 336, 367, 1992. Pfingst, B. E., De Haan, D. R., and Holloway, L. A., Stimulus features affecting psychophysical detection thresholds for electrical stimulation of the cochlea. I: Phase duration and stimulus duration, Journal of the Acoustical Society of America, 90, 1857, 1991.

Pfingst, B. E. and Morris, D. J., Stimulus features affecting psychophysical detection thresholds for electrical stimulation of the cochlea. II: Frequency and interpulse interval, Journal of the Acoustical Society of America, 94, 1287, 1993. Pfingst, B. E., Holloway, L. A., and Razzaque, S. A., Effects of pulse separation on detection thresholds for electrical stimulation of the human cochlea, Hearing Research, 98, 77, 1996.

Coste, R. L. and Pfingst, B. E., Stimulus features affecting psychophysical detection thresholds for electrical stimulation of the cochlea. III: Pulse polarity, Journal of the Acoustical Society of America, 99, 3099, 1996.

Miller, A. L., Morris, D. J., and Pfingst, B. E., Interactions between pulse separation and pulse polarity order in cochlear implants, Hearing Research, 109, 21, 1997. Zwolan, T. A., Kileny, P. R., and Boerst, A. K., Programming the Nucleus 20+2L cochlear implant: using the apical electrode as active, in Association for Research in Otolaryngology Abstracts, Popelka, G. R., Ed., Vol. 21, Association for Research in Otolaryngology, Mt. Royal, NJ, 1998, 220.

van den Honert, C. and Stypulkowski, P. H., Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings, Hearing Research, 14, 225, 1984.

Parkins, C. W., Temporal response patterns of auditory nerve fibers to electrical stimulation in deafened squirrel monkeys, Hearing Research, 41, 137, 1989. Moon, A. K., Zwolan, T. A., and Pfingst, B. E., Effects of phase duration on detection of electrical stimulation of the human cochlea, Hearing Research, 67, 166, 1993. Glass, I., Phase-locked responses of cochlear nucleus units to electrical stimulation through a cochlear implant, Experimental Brain Research, 55, 386, 1984. Javel, E., Tong, Y. C., Shepherd, R. K., and Clark, G. M., Responses of cat auditory nerve fibers to biphasic electrical current pulses, Annals of Otology, Rhinology and Laryngology, 96, 26, 1987.

Dynes, S. B. C. and Delgutte, B., Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea, Hearing Research, 58, 79, 1992. Morse, R. P. and Evans, E. F., Additive noise can enhance temporal coding in a computational model of analogue cochlear implant stimulation, Hearing Research, 133, 107, 1999.

Rubinstein, J. T., Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation, Hearing Research, 127, 108, 1999. Morse, R. P. and Evans, E. F., Preferential and non-preferential transmission of formant information by an analogue cochlear implant using noise: the role of the nerve threshold, Hearing Research, 133, 120, 1999.

Lehnhardt, E., Gnadeberg, D., Battner, R. D., and von Wallenberg, E., Experience with the cochlear miniature speech processor in adults and children together with a comparison of unipolar and bipolar modes, ORL-Journal of Oto-Rhino-Laryngology and its Related Specialties, 54, 308, 1992.

Zwolan, T. A., Kileny, P. R., Ashbaugh, C., and Telian, S. A., Patient performance with the Cochlear Corporation "20+2" implant: bipolar versus monopolar activation, American Journal of Otology, 17, 717, 1996.

Shannon, R. V., Detection of gaps in sinusoids and pulse trains by patients with cochlear implants, Journal of the Acoustical Society of America, 85, 2587, 1989. Pfingst, B. E. and Rai, D. T., Effects of level on nonspectral frequency difference limens for electrical and acoustic stimuli, Hearing Research, 50, 43, 1990. Shannon, R. V., Temporal modulation transfer functions in patients with cochlear implants, Journal of the Acoustical Society of America, 91, 2156, 1992. Shannon, R. V., Reply to: "comment on 'temporal modulation transfer functions in patients with cochlear implants' "(J. Acoust. Soc. Am., 93, 1649, 1993), Journal of the Acoustical Society of America, 93, 1651, 1993.

Pfingst, B. E., Holloway, L. A., Poopat, N., Subramanya, A. R., Warren, M. F., and Zwolan, T. A., Effects of stimulus level on nonspectral frequency discrimination by human subjects, Hearing Research, 78, 197, 1994.

Pfingst, B. E., Holloway, L. A., Zwolan, T. A., and Collins, L. M., Effects of stimulus level on electrode-place discrimination in human subjects with cochlear implants, Hearing Research, 134, 105, 1999.

Shannon, R. V., Zeng, F.-G., and Wygonski, J., Speech recognition with altered spectral distribution of envelope cues, Journal of the Acoustical Society of America, 104, 2467, 1998.

Dorman, M. F., Loizou, P. C., and Rainey, D., Simulating the effect of cochlear-implant electrode insertion depth on speech understanding, Journal of Acoustal Society of America, 102, 2993, 1997.

Fu, Q.-J. and Shannon, R. V., Recognition of spectrally degraded and frequency-shifted vowels in acoustic and electric hearing, Journal of Acoustical Society of America, 105, 1889, 1999.

Lenarz, T., Battmer, R. D., Lesinski, A., and Parker, J., Nucleus double electrode array: a new approach for ossified cochleae, American Journal of Otology, 18, 39, 1997. Bredberg, G., Lindström, B., Löppönen, H., Skarzynski, H., Hyodo, M., and Sato, H., Electrodes for ossified cochleas, American Journal of Otology, 18, 42, 1997. Colletti, V., Fiorino, F. G., Saccetto, L., Giarbini, N., and Carner, M., Improved auditory performance of cochlear implant patients using the middle fossa approach, Audiology, 38, 225, 1999.

Fayad, J., Linthicum, F. H., Otto, S. R., Galey, F. R., and House, W. F., Cochlear implants-histopathologic findings related to performance in 16 human temporal bones, Annals of Otology, Rhinology and Laryngology, 100, 807, 1991. Shepherd, R. K., Hatsushika, S., and Clark, G. M., Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation, Hearing Research, 66, 108, 1993.

Kral, A., Hartmann, R., Mortazavi, D., and Klinke, R., Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents, Hearing Research, 121, 11, 1998.

Snyder, R. L., Rebscher, S. J., Cao, K., Leake, P. A., and Kelly, K., Chronic intrac-ochlear electrical stimulation in the neonatally deafened cat. I. Expansion of central representation, Hearing Research, 50, 7, 1990.

Pfingst, B. E., Burnett, P. A., and Sutton, D., Intensity discrimination with cochlear implants, Journal of the Acoustical Society of America, 73, 1283, 1983. Shannon, R. V., Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics, Hearing Research, 11, 157, 1983.

McKay, C. M., O'Brien, A., and James, C. J., Effect of current level on electrode discrimination in electrical stimulation, Hearing Research, 136, 159, 1999. Zeng, F. G. and Galvin, J. J., Amplitude mapping and phoneme recognition in cochlear implant listeners, Ear and Hearing, 20, 60, 1999.

Skinner, M. W., Holden, L. K., Holden, T. A., and Demorest, M. E., Comparison of two methods for selecting minimum stimulation levels used in programming the Nucleus 22 cochlear implant, Journal of Speech, Language and Hearing Research, 42, 814, 1999.

Parkin, J. L., Percutaneous pedestal in cochlear implantation, Annals of Otology, Rhinology and Laryngology, 99, 796, 1990.

Parkin, J. L. and Parkin, M. J., Multichannel cochlear implantation with percutaneous pedestal, Ear, Nose and Throat Journal, 73, 156, 1994.

Tjellström, A., Rosenhall, U., Lindström, J., Hallen, O., Albreksson, T., and Bräne-mark, P.-I., Five year experience with skin-penetrating bone-anchored implants in the temporal bone, Acta Oto-Laryngologica (Stockholm), 95, 568, 1983.

111. Hákansson, B., Liden, G., Tjellstrom, A., Ringdahl, A., Jacobsson, M., Carrlsson, P., and Erlandson, B.-E., Ten years of experience with the Swedish bone-anchored hearing system, Annals of Otology, Rhinology and Laryngology, 99, 1, 1990.

112. Pfingst, B. E., Albrektsson, T., Tjellstrom, A., Miller, J. M., Zappia, J., Xue, X. L., and Weiser, F., Chronic skull-anchored percutaneous implants in non-human primates, Journal of Neuroscience Methods, 29, 207, 1989.

113. Downing, M., Johansson, U., Carisson, L., Walliker, J. R., Spraggs, P. D., Dodson, H., Hochmair-Desoyer, I. J., and Albrektsson, T., A bone-anchored percutaneous connector system for neural prosthetic applications, Ear, Nose and Throat Journal, 76, 328, 1997.

114. Abbas, P. J., Brown, C. J., Shallop, J. K., Firszt, J. B., Hughes, M. L., Hong, S. H., and Staller, S. J., Summary of results using the Nucleus CI24M implant to record the electrically evoked compound action potential, Ear and Hearing, 20, 45, 1999.

115. Johnsson, L.-G. and Hawkins, J., Sensory and neural degeneration with aging, as seen in microdissections of the human ear, Annals of Otology, Rhinology and Laryngology, 81, 179, 1972.

116. Goycoolea, M. V., Stypulkowski, P., and Muchow, D. C., Ultrastructural studies of the peripheral extensions (dendrites) of type I ganglion cells in the cat, Laryngoscope, 100, 19, 1990.

117. Pfingst, B. E., Glass, I., Spelman, F. A., and Sutton, D., Psychophysical studies of cochlear implants in monkeys: clinical implications, in Cochlear Implants, Schindler, R. A. and Merzenich, M. M., Eds., Raven Press, New York, 1985, 305.

118. Miller, C. A., Abbas, P. J., and Robinson, B. K., The use of long duration current pulses to assess nerve survival, Hearing Research, 78, 11, 1994.

119. Hall, R. D., Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response, Hearing Research, 45, 123, 1990.

120. Lousteau, R. J., Increased spiral ganglion cell survival in electrically stimulated, deafened guinea pig cochleae, Laryngoscope, 97, 836, 1987.

121. Hartshorn, D. O., Miller, J. M., and Altschuler, R. A., Protective effect of electrical stimulation in the deafened guinea pig cochlea, Otolaryngology — Head and Neck Surgery, 104, 311, 1991.

122. Leake, P. A., Hradek, G. T., Rebscher, S. J., and Snyder, R. L., Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neona-tally deafened cats, Hearing Research, 54, 251, 1991.

123. Mitchell, A., Miller, J. M., Finger, P. A., and Heller, J. W., Effects of chronic highrate electrical stimulation on the cochlea and eighth nerve in the deafened guinea pig, Hearing Research, 105, 30, 1997.

124. Leake, P. A., Hradek, G. T., and Snyder, R. L., Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness, Journal of Comparative Neurology, 412, 543, 1999.

125. Staecker, H., Kopke, R., Malgrange, B., Lefebvre, P., and Van de Water, T. R., NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells, NeuroReport, 7, 889, 1996.

126. Miller, A. L., Yamasoba, T., and Altschuler, R. A., Influence of growth factors on hair cell and spiral ganglion neuron preservation and regeneration, Current Opinion in Otolaryngology and Head and Neck Surgery, 6, 301, 1998.

127. Marzella, P. L. and Clark, G. M., Growth factors, auditory neurones and cochlear implants: A review, Acta Oto-Laryngologica (Stockholm), 119, 407, 1999.

128. Araki, S., Kawano, A., Seldon, H., Shepherd, R., Funasaka, S., and Clark, G., Effects of chronic electrical stimulation on spiral ganglion neuron survival and size in deafened kittens, Laryngoscope, 108, 687, 1998.

129. Li, L., Parkins, C. W., and Webster, D. B., Does electrical stimulation of deaf cochleae prevent spiral ganglion degeneration?, Hearing Research, 133, 27, 1999.

130. Powell, T. P. S. and Erulkar, S. D., Transneuronal cell degeneration in the auditory relay nuclei of the cat, Journal of Anatomy, 96, 249, 1962.

131. Webster, D. B., Auditory neuronal sizes after a unilateral conductive hearing loss, Experimental Neurology, 79, 130, 1983.

132. Miller, J. M., Altschuler, R. A., Hartshorn, D. O., Helfert, R. H., and Moore, J. K., Deafness-induced changes in the central nervous system: reversibility and prevention, in Noise-Induced Hearing Loss, Marshall, D., Ed. Mosby Year Book, Inc., St. Louis, 1992, 130.

133. Bledsoe, S. C., Nagase, S., Miller, J. M., and Altschuler, R. A., Deafness-induced plasticity in the mature central auditory system, NeuroReport, 7, 225, 1995.

134. El-Kashlan, H. K., Norrily, A. D., Niparko, J. K., and Miller, J. M., Metabolic-activity of the central auditory structures following prolonged deafferentation, Laryngoscope, 103, 399, 1993.

135. Irvine, D. R. F., and Rajan, R., Injury- and use-related plasticity in the primary sensory cortex of adult mammals: possible relationship to perceptual learning, Clinical and Experimental Pharmacology and Physiology, 23, 939, 1996.

136. Snyder, R. L., Rebscher, S. J., Leake, P. A., and Kelly, K., Chronic intracochlear electrical stimulation in the neonatally deafened cat. II. Temporal properties of neurons in the inferior colliculus, Hearing Research, 56, 246, 1991.

137. Najafi, K., Wise, K. D., and Mochizuki, T., A high-yield IC-compatible multichannel recording array, IEEE Transactions on Electronic Devices, ED-32, 1206, 1985.

138. Hetke, J. F., Lund, J. L., Najafi, K., Wise, K. D., and Anderson, D. J., Silicon ribbon cables for chronically implantable microelectrode arrays, IEEE Transactions on Biomedical Engineering, 41, 314, 1994.

139. Knutson, J. F., Hinrichs, J. V., Tyler, R. S., Gantz, B. J., Schartz, H. A., and Woodworth, G., Psychological predictors of audiological outcomes of multichannel cochlear implants: preliminary findings, Annals of Otology, Rhinology and Laryngology, 100, 817, 1991.

140. Gantz, B. J., Woodworth, G. G., Knutson, J. F., Abbas, P. J., and Tyler, R. S., Multivariate predictors of audiological success with multichannel cochlear implants, Annals of Otology, Rhinology and Laryngology, 102, 909, 1993.

141. Tye-Murray, N., Foundations of Aural Rehabilitation, Singular Publishing Group, San Diego, CA, 1998.

142. Kileny, P. R., Zimmerman-Phillips, S., Kemink, J. L., and Schmaltz, S. P., Effects of preoperative electrical stimulability and historical factors on performance with multichannel cochlear implant, Annals of Otology, Rhinology and Laryngology, 100, 563, 1991.

143. Blamey, P. J., Pyman, B. C., Gordon, M., Clark, G. M., Brown, A. M., Dowell, R. C., and Hollow, R. D., Factors predicting postoperative sentence scores in postlinguisti-cally deaf adult cochlear implant patients, Annals of Otology, Rhinology and Laryngology, 101, 342, 1992.

144. Rubinstein, J. T., Parkinson, W. S., Tyler, R. S., and Gantz, B. J., Residual speech recognition and cochlear implant performance: effects of implantation criteria, American Journal of Otology, 20, 445, 1999.

Ito, J., Tsuji, J., and Sakakihara, J., Reliability of the promontory stimulation test for the preoperative evaluation of cochlear implants: a comparison with the round window stimulation test, Auris Nasus Larynx, 21, 13, 1994.

Brown, C. J., Abbas, P. J., Borland, J., and Bertschy, M. R., Electrically evoked whole nerve action potentials in Ineraid cochlear implant users: Responses to different stimulating electrode configurations and comparison to psychophysical responses, Journal of Speech and Hearing Research, 39, 453, 1996.

Hill, A. V., The strength-duration relation for electric excitation of medullated nerve, Proceedings of the Royal Society of London Series B: Biological Sciences, 119, 440, 1936.

Frankenhaeuser, B. and Huxley, A. F., The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data, Journal of Physiology (London), 171, 302, 1964.

Bostock, H., The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters, Journal of Physiology (London), 341, 59, 1983.

Colombo, J. and Parkins, C. W., A model of electrical excitation of the mammalian auditory-nerve neuron, Hearing Research, 31, 287, 1987.

Bruce, I. C., White, M. W., Irlicht, L. S., O'Leary, S. J., Dynes, S., Javel, E., and Clark, G. M., A stochastic model of the electrically stimulated auditory nerve: singlepulse response, IEEE Transactions on Biomedical Engineering, 46, 617, 1999. Miller, C. A., Faulkner, M. J., and Pfingst, B. E., Functional responses from guinea pigs with cochlear implants. II. Changes in electrophysiological and psychophysical measures over time, Hearing Research, 92, 100, 1995.

Pfingst, B. E. and Sutton, D., Relation of cochlear implant function to histopathology in monkeys, Annals of the New York Academy of Sciences, 405, 224, 1983. Pfingst, B. E., Changes over time in thresholds for electrical stimulation of the cochlea, Hearing Research, 50, 225, 1990.

Pfingst, B. E., Morris, D. J., and Miller, A. L., Effects of electrode configuration on threshold functions for electrical stimulation of the cochlea, Hearing Research, 85, 76, 1995.

Smith, D. W. and Finley, C. C., Effects of electrode configuration on psychophysical strength-duration functions for single biphasic electrical stimuli in cats, Journal of the Acoustical Society of America, 102, 2228, 1997.

Zwolan, T. A., Collins, L. M., and Wakefield, G. H., Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects, Journal of the Acoustical Society of America, 102, 3673, 1997.

Henry, B., McKay, C., McDermott, H., and Clark, G., Speech cues for cochlear implantees: spectral discrimination, Sydney '97: XVI World Congress of Otolaryn-gology Head and Neck Surgery, 89, 1997.

Nelson, D. A., VanTasell, D. J., Schroder, A. C., Soli, S., and Levine, S., Electrode ranking of "place pitch" and speech recognition in electrical hearing, Journal of the Acoustical Society of America, 98, 1987, 1995.

Shiroma, M., Honda, K., Yukawa, K., Yamanaka, N., Kumakawa, K., Kawano, J., and Funasaka, S., Factors contributing to phoneme recognition ability of users of the 22-channel cochlear implant system, Annals of Otology, Rhinology and Laryngology, 101, 32, 1992.

Lawson, D. T., Wilson, B. S., Zerbi, M., van den Honert, C., Finley, C. C., Farmer, J. C., McElveen, J. T., and Roush, P. A., Bilateral cochlear implants controlled by a single speech processor, American Journal of Otology, 19, 758, 1998.

162. Brown, J. N., Miller, J. M., Altschuler, R. A., and Nuttall, A. L., Osmotic pump implant for chronic infusion of drugs into the inner ear, Hearing Research, 70, 167, 1993.

163. Raphael, Y. and Yagi, M., Gene transfer in the inner ear, Current Opinion in Otolaryngology and Head and Neck Surgery, 6, 311, 1998.

164. Yagi, M., Magal, E., Sheng, Z., Ang, K. A., and Raphael, Y., Hair cell protection from aminoglycoside ototoxicity by adenovirus-mediated overexpression of glial cell line-derived neurotrophic factor, Human Gene Therapy, 10, 813, 1999.

165. Mensinger, A. F., Anderson, D. J., Buchko, C. J., Johnson, M. A., Martin, D. C., Tresco, P. A., Silver, R. B., and Highstein, S. M., Chronic recording of regenerating VIIIth nerve axons animals with a sieve electrode, Journal of Neurophysiology, 83, 611, 2000.

166. Lai, W. K. and Dillier, N., sCiLab — Swiss Cochlear Implant Laboratory. ENTDepartment, University Hospital of Zurich, Zurich, 1997.

Advances in Upper Extremity Functional Restoration Employing Neuroprostheses

Kevin L. Kilgore, P. Hunter Peckham, and Michael W. Keith

Was this article helpful?

0 0

Post a comment