Paptec D Medicin

The authors wish to acknowledge the support of the member companies of the Institute of Paper Science and Technology at the Georgia Institute of Technology. Portions of this work are being used by Lorraine C. Vander Wielen as partial fulfillment of the requirements for graduation from the Institute of Paper Science and Technology, 500 Tenth Street, NW, Atlanta, GA 30332-0620, U.S.A.


1. Singh, S. K.; Gross, R. A. Overview: Introduction to polysaccharides, agroproteins, and poly(amino acids). In: Gross, R. A.; Scholz, C. (Eds.) Biopolymers from Polysaccharides and Agroproteins, ACS Symposium Series 786. American Chemical Society, Washington DC, 2001, 2-40.

2. Kogelschatz, U.; Eliasson, B.; Egli, W. From ozone generators to flat television screens: History and future potential use of dielectric-barrier discharges. 14th International Symposium on Plasma Chemistry, Praha, Czech Republic, 1999.

3. Kuraica, M. M.; Obradovic, B. M.; Manojlovic, D.; Ostojic, D. R.; Puric, J. New type of coaxial dielectric-barrier-discharge used as ozonized water generator. Adv. Appl. Plasma Sci. 2003, 4,415-418.

4. Ighigeanu, D.; Martin, D.; Macarie, R.; Zissulescu, E.; Calinescu, I.; Iovu, H.; Cirstea, E.; Craciun, G.; Ighigeanu, A. Air pollution control by DC, pulse and microwave discharges. J. Environ. Prot. Ecol. 2003, 4, 525-534.

5. Kogelschatz, U. Dielectric-barrier discharges: Their history, discharge physics, andindustrial applications. Plasma Chem. Plasma Process. 2003, 23, 1-46.

6. Boeuf, J. P.; Pitchford, L. C. Calculated characteristics of an ac plasma display panel cell. IEEE Trans. Plasma Sci. 1996, 24, 95-96.

7. Sun, C. Q.; Zhang, D.; Wadsworth, L. C. Corona treatment of polyolefin films—A review. Adv. Polym. Technol. 1999,18, 171-180.

8. Kogelschatz, U. Filamentary, patterned, and diffuse barrier discharges. IEEE TPlasma Sci. 2002, 30(4 Pt. 1), 1400-1408.

9. Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D. Appl. Phys. 1987, 0, 1421-1437.

10. Cramm, R. H.; Bibee, D. V. The theory and practice of corona treatment for improving adhesion. TappiJ. 1982, 65, 75-78.

11. Kim, C. Y.; Suranyi, G.; Goring, D. A. I. Corona induced bonding of synthetic polymers to cellulose. J. Polym. Sci. C1970, 30, 533-542.

12. Goring, D. A. I. Surface modification of cellulose in a corona discharge. Pulp Pap. Mag. Can. 1967, 68(8), T372-T376.

13. Raizer, Y. P. Gas Discharge Physics. Springer-Verlag, Berlin, 1991, 1-6 (based on original Russian edition, Fizika Gazovogo Razryada).

14. Rehn, P.; Wolkenhauer, M.; Bente, M.; Förster, S.; Viol, W. Wood surface modification in dielectric barrier discharges at atmospheric pressure. Surf. Coat. Technol. 2003, 174-175, 515-518.

15. Vander Wielen, L. C. Dielectric Barrier Discharge-Initiated Fiber Modification. Dissertation, Institute of Paper Science and Technology, Atlanta, GA, 2004.

16. Carlsson, G.; Ström, G. Water sorption and surface composition of untreated or oxygen plasma-treated chemical pulps. Nord. Pulp Pap. Res. J. 1995, 10, 17-23, 32.

17. Shen, B.; Yu, M. Y.; Wang, X. Photon-photon scattering in a plasma channel. Phys. Plasmas 2003,10, 4570-4571.

18. Naidis, G. V. Modeling of plasma chemical processes in pulsed corona discharges. J. Phys. D. Appl. Phys. 1997, 30, 1214-1218.

19. Shahin, M. M. Nature of charge carriers in negative coronas. Appl. Opt. Suppl. Electropho-togr. 1969, 3, 106-110.

20. Denes, F.; Simionescu, C. I. Use of plasma chemistry in the synthesis and modification of natural macromolecular compounds. Cell. Chem. Technol. 1980,14, 285-316.

21. Nishiyama, S.; Funato, N.; Sawatari, A. Analysis of functional groups formed on the corona treated cellulose fiber sheet surface by means of chemical modification in gas phase ESCA technique. Sen-I Gakkaishi 1993, 49, 73-82.

22. Goossens, O.; Dekempeneer, E.; Vangeneugden, D.; Van de Leest, R.; Leys, C. Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning, and activation. Surf. Coat. Technol. 2001,142-144, 474-481.

23. Lawson, D.; Greig, S. Bare roll treaters vs. covered roll treaters. Polymers, Laminations, and Coating Conference, 1997, 681-693.

24. Back, E. L.; Danielsson, S. Oxidative activation of wood and paper surfaces for bonding and for paint adhesion. Nord. Pulp Pap. Res. J. 1987, 53-62.

25. Brown, P. F.; Swanson, J. W. Wetting properties of cellulose treated in a corona discharge. TappiJ. 1971, 54, 2012-2018.

26. Bezigian, T. The effect of corona discharge on polymer films. Tappi J. 1992, 75, 139141.

27. Vander Wielen, L. C.; Elder, T.; Raguaskas, A. J. Analysis of the topochemistry of dielectric-barrier discharge treated cellulosic fibers. Cellulose. 2005, 12(2), 185-196.

28. Santos, J. M. R. C. A.; Gil, M. H.; Portugal, A.; Guthrie, J. T. Characterization of the surface of a cellulosic multi-purpose office paper by inverse gas chromatography. Cellulose 2001, 8, 217-224.

29. Jacob, P. N.; Berg, J. C. Acid-base surface energy characterization of microcrystalline cellulose and two wood pulp fiber types using inverse gas chromatography. Langmuir 1994,10, 3086-3093.

30. Garnier, G.; Glasser, W. G. Measurement of the surface free energy of amorphous cellulose by alkane adsorption: A critical evaluation of inverse gas chromatography (IGC). J. Adhes. 1994, 46, 165-180.

31. Liu, F. P.; Rials, T. G.; Simonson, J. Relationship of wood surface energy to surface composition. Langmuir 1998, 14, 536-541.

32. Felix, J. M.; Gatenholm, P. Characterization of cellulose fibers using inverse gas chromatog-raphy. Nord. Pulp Pap. Res. J. 1993, 8, 200-203.

33. Belgacem, M. N.; Blayo, A.; Gandini, A. Surface characterizationofpolysaccharides, lignins, printing ink pigments, and ink fillers by inverse gas chromatography. J. Colloid Interface Sci. 1996, 182, 431-436.

34. Dorris, G. M.; Gray, D. G. The surface analysis of paper and wood fibers by ESCA (electron spectroscopy for chemical analysis). I. Application to cellulose and lignin. Cell. Chem. Technol. 1978, 12, 9-23.

35. Dorris, G. M.; Gray, D. G. The surface analysis of paper and wood fibers by ESCA. II. Surface composition of mechanical pulps. Cell. Chem. Technol. 1978, 12, 721-734.

36. Koljonen, K.; Osterberg, M.; Johansson, L.-S.; Stenius, P. Surface chemistry andmorphol-ogy of different mechanical pulps determined by ESCA and AFM. Colloids Surfaces A. Physicochem. Eng. Aspects 2003, 228, 143-158.

37. Hulten, A. H.; Paulsson, M. Surface characterization of unbleached and oxygen delignified kraft pulp fibers. J. Wood Chem. Technol. 2003, 23, 31-46.

38. Gellerstedt, F.; Gatenholm, P. Surface properties of lignocellulosic fibers bearing carboxylic groups. Cellulose 1991, 6, 103-121.

39. Laine, J.; Stenius, P.; Carlsson, G.; Stroem, G. The effect of elemental chlorine-free (ECF) and totally chlorine-free (TCF) bleaching on the surface chemical composition of kraft pulp as determined by ESCA. Nord. Pulp Pap. Res. J. 1996, 11, 201-210.

40. Gurnagul, N.; Ouchi, M. D.; Dunlop-Jones, N.; Sparkes, D. G.; Wearing, J. T. Coefficient of friction of paper. J. Appl. Polym. Sci. 46, 805-814.

41. Belgacem, M.N.; Czeremuszkin, G.; Sapieha, S. Surface characterization of cellulose fibers by XPS and inverse gas chromatography. Cellulose 1995, 2, 145-157.

42. Vander Wielen, L. C.; Raguaskas, A. J. Dielectric discharge: A concatenated approach to fiber modification. Proceedings of the 12th International Symposium on Wood and Pulping Chemistry, Vol. 1, Madison, WI, 2003, 373-376.

43. Sakata, I.; Morita, M.; Furuichi, H.; Kawaguchi, Y. Improvement of ply-bond strength of paperboard by corona treatment. J. Appl. Polym. Sci. 1991, 42, 2099-2104.

44. Borcia, G.; Anderson, C. A.; Brown, N. M. D. Dielectric barrier discharge for surface treatment: Application to selected polymers in film and fiber form. Plasma Sci. Technol. 2003, 12, 335-344.

45. Bukovsky, V; Trnkova, M. The influence of secondary chromophores on the light induced oxidation of paper. Part II: The influence of oxidation of paper. Restaurator 2003, 24, 118132.

46. Sakata, I.; Goring, D. A. I. Corona-induced graft polymerization of ethyl acrylate onto cellulose film. J. Appl. Polym. Sci. 1976, 20, 573-579.

47. Bataille, P.; Dufourd, M.; Sapieha, S. Copolymerization of styrene on to cellulose activated by corona. Polym. Int. 1994, 34, 387-391.

48. Bataille, P.; Dufourd, M.; Sapieha, S. Graft polymerization of styrene onto cellulose by corona discharge. Polym. Preprints 1991, 32, 559-560.

49. Vander Wielen, L. C.; Raguaskas, A. J. Grafting of acrylamide onto lignocellulosic fibers via dielectric-barrier discharge. Eur. Polym. J. 2004, 40, 477-482.

50. Vander Wielen, L. C.; Ragauskas, A. J. Dielectric-barrier discharge treatment: A palmary approach to fiber modification. American Institute of Chemical Engineers National Meeting, San Francisco, CA, 2003, 489a.

51. Goring, D. A. I. Surface modification of cellulose. Canadian Patent 8304689, Pulp and Paper Research Institute of Canada, 1969.

52. Kim, C. Y.; Goring, D. A. I. Corona induced bonding of synthetic polymers to wood. Pulp Pap. Mag. Can. 1971, 82, 93-96.

53. Kemppi, A. Studies on adhesion between paper and low-density polyethylene. 1 Influence of the natural components in paper. Paperija Puu 1996, 78, 610-617.

54. Kemppi, A. Adhesion between paper and low density polyethylene. 2. The influence of starch. Paperija Puu 1997, 79, 178-185.

55. Kemppi, A. Adhesion between paper and low density polyethylene. 3. The influence of fillers. Paperija Puu 1997, 79, 330-338.

56. Back, E. L. Oxidative activation of wood surfaces for glue bonding. Forest Products J. 1991, 41, 30-36.

57. Berkes, J. S.; Bonsignore, F. J. Xerox Corp. Process for obtaining a very high transfer efficiency from intermediate to paper. United States Patent. No. 5119140, 1992.

58. Vander Wielen, L. C.; Page, D. H.; Ragauskas, A. J. Impact of dielectric-barrier discharge on bonding. 2003 International Paper Physics Conference Pre-prints, PAPTAC, Victoria, British Columbia, Canada, 2003, 347-349.

59. Vander Wielen, L. C.; Page, D. H.; Ragauskas, A. J. Enhanced wet-tensile paper properties via dielectric-barrier discharge treatment. Holzforschung 2005, 59, 65-71.

60. Nishimura, J.; Nakao, T.; Uehara, T.; Yano, S. Improvement of paperboard mechanical properties by corona-discharge treatment. Tappi J. 1990, 73, 275-276.

61. Vander Wielen, L. C.; Ragauskas, A. J. Wet-stiffening of TMP and kraft fibers via dielectric-barrier discharge treatment. Nord. Pulp Pap. Res. J. 2004, 19, 384-385.

62. Young, R. A.; Denes, F.; Hua, Z. Q.; Sabharwal, H.; Nielsen, L. Cold plasma modification of lignocellulosic material. International Symposium on Wood and Pulping Chemistry, Helsinki, Finland, 1995, 637-644.

63. Denes, A. R.; Tshabalala, M. A.; Rowell, R.; Denes, F.; Young, R. A. Hexamethyldisiloxane-plasma coating of wood surfaces for creating water repellent characteristics. Holzforschung 1999, 53, 318-326.

64. Rehn, P.; Viol, W. Dielectric-barrier discharge treatments at atmospheric pressure for wood surface modification. Holz als Roh-und Werkstoff2003, 61, 145-150.

65. Tappi useful method 256. TAPPI Useful Methods, Vol. 1991. Atlanta, GA, 54-56, 1991.

Was this article helpful?

0 0

Post a comment