Facilitated Diffusion



The tendency for water molecules to diffuse across membranes can be used to extract pure water from a mixture of water and solutes. If a dilute solution is separated from a more concentrated solution by a selectively permeable membrane, osmosis will occur, as water molecules diffuse from the dilute solution to the concentrated solution. However, if enough external pressure is applied to the concentrated solution, the opposite will happen: water molecules will diffuse from the concentrated solution to the dilute solution. This process, called reverse osmosis, effectively moves most of the water to one side of the membrane and leaves most of the solutes on the other side.

Reverse osmosis was initially developed for desalination plants, which produce fresh water from sea water. It is now also used to purify polluted water from a variety of sources, including manufacturing facilities and sanitary landfills. After the polluted water from these sources is purified through reverse osmosis, it is clean enough to be returned safely to the environment.

The transport of glucose illustrates two important properties of facilitated diffusion. First, facilitated diffusion can help substances move either into or out of a cell, depending on the concentration gradient. Thus, when the level of glucose is higher inside a cell than it is outside the cell, facilitated diffusion speeds the diffusion of glucose out of the cell. Second, the carrier proteins involved in facilitated diffusion are each specific for one type of molecule. For example, the carrier protein that helps with the diffusion of glucose and other simple sugars does not assist with the diffusion of amino acids.

Sirens Sleep Solution

Sirens Sleep Solution

Discover How To Sleep In Peace And Harmony In A World Full Of Uncertainty And Dramatically Improve Your Quality Of Life Today! Finally You Can Fully Equip Yourself With These “Must Have” Tools For Achieving Peace And Calmness And Live A Life Of Comfort That You Deserve!

Get My Free Ebook

Post a comment