M

The Revised Authoritative Guide To Vaccine Legal Exemptions

Vaccines Have Serious Side Effects

Get Instant Access

results because the organism can be found as normal flora in some patient populations?

a. Neisseria gonorrhoeae b. HIV

c. Chlamydophila pneumoniae d. Streptococcus pneumoniae

4. Which of the following controls are critical for ensuring that amplification is occurring in a patient sample and that the lack of PCR product is not due to the presence of inhibitors?

a. Reagent blank b. Sensitivity control c. Negative control d. Amplification control

5. A PCR assay performed to detect Bordetella pertussis on sputum obtained from a 14-year-old girl who has had a chronic cough had two bands, one consistent with the internal control and the other consistent with the size expected for amplification of the B. pertussis target. How should these results be interpreted?

a. False positive for B. pertussis b. The girl has clinically significant B. pertussis infection c. B. pertussis detection is more likely due to colonization d. Invalid because two bands were present

6. Which of the following is a disadvantage of molecular-based testing?

a. Results stay positive longer after treatment than do cultures b. Results are available within hours c. Only viable cells yield positive results d. Several milliliters of specimen must be submitted for analysis

7. A molecular-based typing method that has high typing capacity, reproducibility and discriminatory power, moderate ease of performance, and good to moderate ease of interpretation is:

a. Repetitive elements b. PFGE

c. Plasmid analysis d. PCR-RFLP

8. A patient has antibodies against HCV and a viral load of 100,000 copies/mL. What is the next test that should be performed on this patient's isolate?

a. Riboyping b. PCR-RFLP

c. Hybrid capture d. Inno-LiPA HCV genotyping

References

1. Brisson-Noel A, Gicquel B, Lecossier D, et al. Rapid diagnosis of tuberculosis by amplification of mycobacterial DNA in clinical samples. Lancet 1989;2:1069-1071.

2. De Wit D, Steyn L, Shoemaker S, et al. Direct detection of Mycobacterium tuberculosis in clinical specimens by DNA amplification. Journal of Clinical Microbiology 1990;28: 2437-441.

3. Eisenach KD, Cave MD, Bates JH, et al. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobac-terium tuberculosis. Journal of Infectious Disease 1990;161:977-81.

4. Bracca A, Tosello ME, Girardini JE, et al. Molecular detection of Histoplasma capsulatum var. capsu-latum in human clinical samples. Journal of Clinical Microbiology 2003;41:1753-55.

5. Martagon-Villamil J, Shrestha N, Sholtis M, et al. Identification of Histoplasma capsulatum from culture extracts by real-time PCR. Journal of Clinical Microbiology 2003;41:1295-98.

6. Bialek R, Gonzalez GM, Begerow D, et al. Coccidioidomycosis and blastomycosis: Advances in molecular diagnostics. FEMS Immunology & Medical Microbiology 2005;45:355-60.

7. Johnson SM, Simmons KA, Pappagianis D. Amplification of coccidioidal DNA in clinical specimens by PCR. Journal of Clinical Microbiology 2004;42: 1982-85.

8. Fiebelkorn KR, Nolte FS. RNA Virus Detection. In Persing DH, Tenover FC, Versalovic J, et al, eds. Molecular Microbiology. Diagnostic Principles and Practice. Washington, DC: ASM Press, 2004.

9. Hall, GS. Molecular diagnostic methods for the detection of Neisseria gonorrhoeae and Chlamydia trachomatis. Reviews in Medical Microbiology 2005;16:69-78.

10. Geha DJ, Uhl JR, Gustaferro CA, et al. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. Journal of Clinical Microbiology 1994;32:1768-72.

11. Satake S, Clark N, Rimland D, et al. Detection of vancomycin-resistant enterococci in fecal samples by PCR. Journal of Clinical Microbiology 1997; 35:2325-30.

12. Hunt JM, Roberts GD, Stockman L, et al. Detection of a genetic locus encoding resistance to rifampin in mycobacterial cultures and in clinical specimens.

Diagnostic Microbiology and Infectious Disease 1994;18:219-27.

13. Cockerill III FR, Uhl JR, Temesgen Z, et al. Rapid identification of a point mutation of the Mycobacterium tuberculosis catase-peroxidase (katG) gene associated with isoniazid resistance. Journal of Infectious Disease 1995;171: 240-45.

14. Relman DA, Schmidt TM, MacDermott RP, et al. Identification of the uncultured bacillus of Whipple's disease. New England Journal of Medicine 1992;327:293-301.

15. Sefers S, Pei Z, Tang Y-W. False positives and false negatives encountered in diagnostic molecular microbiology. Reviews in Medical Microbiology 2005;16:59-67.

16. Nolte FS, Caliendo AM. Molecular Detection and Identification of Microorganisms. In Murray PR, Baron EJ, Jorgensen JH, et al. Manual of Clinical Microbiology, 8th ed. Washington, DC: ASM Press, 2003.

17. Becker S, Franco JR, Simarro PP, et al. Real-time PCR for detection of Trypanosoma brucei in human blood samples. Diagnostic Microbiology and Infectious Disease 2004;50(3):193-99 .

18. Loens K, Ursi D, Goossens H, et al. Molecular diagnosis of Mycoplasma pneumoniae respiratory tract infections. Journal of Clinical Microbiology 2003;41:4915-23.

19. National Committee for Clinical Laboratory Standards. Molecular diagnostic methods for infectious diseases; Approved guideline. (MM3-A). Wayne, PA: NCCLS, 1995.

20. Association for Molecular Pathology statement. Recommendations for in-house development and operation of molecular diagnostic tests. American Journal of Clinical Pathology. 1999; 111:449-63.

21. Espy M, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology: Applications for routine laboratory testing. Clinical Microbiology Reviews 2006;19:165-256.

22. Kolbert, CP, Rys, PN, Hopkins M, et al. 16S ribosomal DNA sequence analysis for identification of bacteria in a clinical microbiology laboratory. In Persing DH, Tenover FC, Versalovic J, et al, eds. Molecular Microbiology. Diagnostic Principles and Practice. Washington, DC:ASM Press, 2004.

23. Clarridge JE. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clinical Microbiology Reviews. 2004;17:840-62.

24. Ieven M, Loens K, Goossens H. Detection and characterization of bacterial pathogens by nucleic acid amplification: State of the art review. In Persing DH, Tenover FC, Versalovic J, et al, eds. Molecular Microbiology. Diagnostic Principles and Practice. Washington, DC:ASM Press, 2004.

25. Winn WC, Allen S, Janda W, et al. Koneman's Color Atlas and Textbook of Diagnostic Microbiology, 6th ed. Baltimore: Lippincott Williams & Wilkins, 2006.

26. Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393: 537-44.

27. Brosch R, Gordon SV, Eiglmeier K, et al. Geno-mics, biology, and evolution of the Mycobacterium tuberculosis complex. In Hatfull GF, Jacobs WR, eds. Molecular Genetics of Mycobacteria. Washington, DC: ASM Press, 2000.

28. Lipsky BA, Gates J, Tenover FC, et al. Factors affecting the clinical value of microscopy for acid-fast bacilli. Reviews of Infectious Diseases 1984;6: 214-22.

29. European Society of Mycobacteriology. Decontamination, microscopy, and isolation. In Yates MD, Groothuis DG, eds. Diagnostic Public Health

Mycobacteriology. London: Bureau of Hygiene 38

and Tropical Disease, 1991.

30. Jost KCJ, Dunbar DF, Barth SS, et al. Identification of Mycobacterium tuberculosis and M. avium complex directly from smear-positive sputum specimens and BACTEC 12B cultures by high-performance 39 liquid chromatography with fluorescence detection and computer-driven pattern recognition models. Journal of Clinical Microbiology 1995;35:907-14.

31. Chapin-Robertson K, Dahlberg S, Waycott S, et al. 40 Detection and identification of Mycobacterium directly from BACTEC bottles by using a DNA-rRNA probe. Diagnostic Microbiology & Infectious Disease 1993;17:203-207.

32. Gamboa F, Fernandez G, Padilla E, et al. Comparative evaluation of initial and new versions of the 41 Gen-Probe Amplified Mycobacterium tuberculosis direct test for direct detection of Mycobacterium tuberculosis in respiratory and nonrespiratory speci- 42 mens. Journal of Clinical Microbiology 1998;36: 684-89.

33. D'Amato RF, Wallman AA, Hochstein LH, et al. Rapid diagnosis of pulmonary tuberculosis by using Roche AMPLICOR Mycobacterium tuberculosis PCR test. Journal of Clinical Microbiology 1995; 33:1832-34.

34. Piersimoni C, Callegaro C, Nista D, et al. Comparative evaluation of two commercial amplification 43 assays for direct detection of Mycobacterium tuberculosis complex in respiratory specimens.

Journal of Clinical Microbiology 1997;35:

193-96. 44

35. Kerr JR, Matthews RC. Bordetella pertussis infection: Pathogenesis, diagnosis, management, and the role of protective immunity. European Journal of Clinical Microbiology and Infectious Diseases 2000;19:77-88. 45

36. Dragsted DM, Dohn B, Madsen J, et al. Comparison of culture and PCR for detection of Bordetella pertussis and Bordetella parapertussis under rou- 46 tine laboratory conditions. Journal of Medical Microbiology 2004;53:749-54.

37. Fry NK, Tzivra O, Li YT, et al. Laboratory diagnosis of pertussis infections: the role of PCR and 47 serology. Journal of Medical Microbiology 2004; 53:519-25.

Chan EL, Antonishyn N, McDonald R, et al. The use of TaqMan PCR assay for detection of Bordetella pertussis infection from clinical specimens. Archives of Pathology and Laboratory Medicine 2002;126:173-76. Yih W, Silva E, Ida J, et al. Bordetella holmesii-like organisms isolated from Massachusetts patients with pertussis-like symptoms. Emerging Infectious Diseases 1999;5:441-43.

Templeton KE, Scheltinga SA, van der Zee A, et al. Evaluation of real-time PCR for detection of and discrimination between Bordetella pertussis, Bordetella parapertussis, and Bordetella holmesii for clinical diagnosis. Journal of Clinical Microbiology 2003;41:4121-26. Grayston JT. Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. Journal of Infectious Disease 2000;181:S402-S410. Everett KD, Bush RM, Anderson AA. Amended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species and standards for the identification of organisms. International Journal of Systematic Bacteriology 1999;49:415-40.

Boman J, Gaydos CA, Quinn TC. Molecular diagnosis of Chlamydia pneumoniae infection. Journal of Clinical Microbiology 1999;37: 3791-99.

Fang GD, Fine M, Orloff J, et al. New and emerging etiologies for community-acquired pneumonia with implications for therapy: A prospective multicenter study of 359 cases. Medicine 1990;69: 307-16.

Muder RR, Yu VL, Fang GD. Community-acquired legionnaires' disease. Seminars in Respiratory Infections 1989;4:32-39. Stout JE, Rihs JD, Yu VL. Legionella. In Murray PR, Baron EJ, Jorgensen JH, et al. Manual of Clinical Microbiology, 8th ed. Washington, DC: ASM Press, 2003.

Rantakokko-Jalava K, Jalava J. Development of conventional and real-time PCR assays for detection of Legionella DNA in respiratory specimens.

Journal of Clinical Microbiology 2001;39:2904-2910.

48. Reischl U, Linde H-J, Lehn N, et al. Direct detection and differentiation of Legionella spp. and Legionella pneumophila in clinical specimens by dual-color real-time PCR and melting curve analysis. Journal of Clinical Microbiology 2002;40: 3814-17.

49. de Barbeyrac B, Berner-Poggi C, Febrer F, et al. Detection of Mycoplasma pneumoniae and Mycoplasma genitalium in clinical samples by polymerase chain reaction. Clinical Infectious Disease 1993;17:83-89.

50. Falguera M, Nogues A, Ruiz-Gonzalez A, et al. Detection of Mycoplasma pneumoniae by poly-merase chain reaction in lung aspirates from patients with community-acquired pneumonia. Chest 1996;110:972-76.

51. Ieven M, Usrsi D, Van Bever H, et al. Detection of Mycoplasma pneumoniae by two polymerase chain reactions and role of M. pneumoniae in acute respiratory tract infections in pediatric patients. Journal of Infectious Disease 1996;173:1445-52.

52. Kai MS, Kamiya H, Yabe H, et al. Rapid detection of Mycoplasma pneumoniae in clinical samples by the polymerase chain reaction. Journal of Medical Microbiology 1993;38:166-70.

53. Grondahl B, Puppe W, Hoppe A, et al. Rapid identification of nine microorganisms causing acute respiratory tract infections by single-tube multiplex reverse transcription-PCR: Feasibility study. Journal of Clinical Microbiology 1999;37:1-7.

54. Khanna M, Fan J, Pehler-Harrington K, et al. The pneumoplex assays, a multiplex PCR-enzyme hybridization assay that allows simultaneous detection of five organisms, Mycoplasma pneumoniae, Chlamydia (Chlamydophila) pneumoniae, Legionella pneumophila, Legionella micdadei, and Bordetella pertussis, and its real-time counterpart. Journal of Clinical Microbiology 2005;43:565-71.

55. McDonough EA, Barrozo CP, Russell KL, et al. A multiplex PCR for detection of Mycoplasma pneu-moniae, Chlamydophila pneumoniae, Legionella pneumophila, and Bordetella pertussis in clinical specimens. Molecular and Cellular Probes 2005; 19:314-22.

56. Messmer TO, Sampson JS, Stinson A, et al. Comparison of four polymerase chain reaction assays for specificity in the identification of Streptococcus pneumoniae. Diagnostic Microbiology and Infectious Disease 2004;49:249-54.

57. Dagan R, Shriker O, Hazan I, et al. Prospective study to determine clinical relevance of detection of pneumococcal DNA in sera of children by PCR. Journal of Clinical Microbiology 1998;36:669-73.

58. Lorente MLL, Falguera M, Nogues A, et al. Diagnosis of pneumococcal pneumonia by poly-merase chain reaction (PCR) in whole blood: A prospective clinical study. Thorax 2000;55:133-37.

59. Murdoch DR, Anderson TP, Beynon KA, et al. Evaluation of a PCR assay for detection of Streptococcus pneumoniae in respiratory and non-respiratory samples from adults with community-acquired pneumonia. Journal of Clinical Microbiology 2003;41:63-66.

60. Totten PA, Manhart LE, Centurion-Lara A. PCR detection of Haemophilus ducreyi, Treponema pallidum, and Mycoplasma genitalium. In Persing DH, Tenover FC, Versalovic J, et al, eds. Molecular Microbiology. Diagnostic Principles and Practice. Washington, DC: ASM Press, 2004.

61. Dragovic B, Greaves K, Vashisht A, et al. Chlamydial co-infections among patients with gonorrhea. International Journal of STD and AIDS 2002;13:261-63.

62. Janda WM, Knapp JS. Neisseria and Moraxella catarrhalis. In Murray PR, Baron EJ, Jorgensen JH, et al. Manual of Clinical Microbiology, 8th ed. Washington, DC: ASM Press, 2003.

63. Norris SJ, Pope V, Johnson RE, et al. Treponema and other human host-associated spirochetes. In Murray PR, Baron EJ, Jorgensen JH, et al. Manual of Clinical Microbiology, 8th ed. Washington, DC: ASM Press, 2003.

64. Liu H, Rodes B, Chen C-Y, et al. New Tests for syphilis: Rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. Journal of Clinical Microbiology 2001; 39:1941-46.

65. Palmer HM, Higgins SP, Herring AJ, et al. Use of PCR in the diagnosis of early syphilis in the United

Kingdom. Sexually Transmitted Diseases 2003;79: 479-83.

66. Chui L, Albritton W, Paster B, et al. Development of polymerase chain reaction for diagnosis of chancroid. Journal of Clinical Microbiology 1993;31: 659-64.

67. Gu XX, Rossau R, Jannes G, et al. The rrs (16S)-rrl (23S) ribosomal intergenic spacer region as a target for the detection of Haemophilus ducreyi by a hemi-nested-PCR assay. Microbiology 1998;144: 1013-1019.

68. Fraser CM, Gocayne JD, White O, et al. The minimal gene complement of Mycoplasma genitalium. Science 1995;270:397-403.

69. Tully JG, Taylor-Robinson D, Cole RM, et al. A newly discovered mycoplasma in the human urogenital tract. Lancet 1981;1:1288-91.

70. Jensen JS, Hansen HT, Lind K. Isolation of Myco-plasma genitalium strains from the male urethra. Journal of Clinical Microbiology 1996;34:286-91.

71. Jensen JS, Uldum SA, Sondergard-Andersen J, et al. Polymerase chain reaction for detection of Mycoplasma genitalium in clinical samples. Journal of Clinical Microbiology 1991;29:46-50.

72. Palmer HM, Gilroy CB, Furr PM, et al. Development and evaluation of the polymerase chain reaction to detect Mycoplasma genitalium. FEMS Microbiology Letters 1991;61:199-203.

73. Jensen JS, Borre MB, Dohn B. Detection of Mycoplasma genitalium by PCR amplification of the 16S rDNA gene. Journal of Clinical Microbiology 2003;41:261-66.

74. Yoshida T, Deguchi T, Ito M, et al. Quantitative detection of Mycoplasma genitalium from first-pass urine of men with urethritis and asymptomatic men by real-time PCR. Journal of Clinical Microbiology 2002;40:1451-55.

75. Deguchi T, Maeda S-I. Mycoplasma genitalium: Another important pathogen of non-gonococcal ure-thritis. Journal of Urology 2002;167:1210-17.

76. Orle KA, Gates CA, Martin DH, et al. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum and herpes simplex virus types 1 and 2 from genital ulcers. Journal of Clinical Microbiology 1996;34:49-54.

77. Weigel L, Clewell DB, Gill SR, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 2003;302: 1569-71

78. Tenover FC, Rasheed JK. Detection of antimicrobial resistance genes and mutations associated with antimicrobial resistance in microorganisms. In Persing DH, Tenover FC, Versalovic J, et al, eds. Molecular Microbiology. Diagnostic Principles and Practice. Washington, DC: ASM Press, 2004.

79. Metan G, Zarakolu P, Unal S. Rapid detection of antibacterial resistance in emerging gram-positive cocci. Journal of Hospital Infection 2005;61:93-99.

80. Leclercq R, Derlot E, Duval J, et al. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. New England Journal of Medicine 1988;319:157-61.

81. Centers for Disease Control and Prevention. Staphylococcus aureus resistant to vancomycin-United States, 2002. Morbidity and Mortality Weekly Report 2002;51;565-567.

82. Palladino S, Kay ID, Flexman, JP, et al. Rapid Detection of vanA and vanB genes directly from clinical specimens and enrichment broths by realtime multiplex PCR assay. Journal of Clinical Microbiology 2003;41:2483-86.

83. Espinal MA, Laszlo A, Simonsen, L, et al. Global trends in resistance to antituberculosis drugs. New England Journal of Medicine 2001;344:1294-303.

84. Meacci F, Orru G, Iona E, et al. Drug resistance evolution of a Mycobacterium tuberculosis strain from a noncompliant patient. Journal of Clinical Microbiology 2005;43(7):3114-20.

85. Grace Lin S-Y, Probert W, Lo M, et al. Rapid detection of isoniazid and rifampin resistance mutations in Mycobacterium tuberculosis complex from cultures or smear-positive sputa by use of molecular beacons. Journal of Clinical Microbiology. 2004; 42:4204-08.

86. Mokrousov I, Otten T, Filipenko M, et al. Detection of isoniazid-resistant Mycobacterium tuberculosis strains by a multiplex allele-specific PCR assay targeting katG codon 315 variation. Journal of Clinical Microbiology 2002:40:2509-12.

87. de Viedma DG, del Sol Diaz Infantes M, Lasala F, et al. New real-timer PCR able to detect in a single tube multiple rifampin resistance mutations in Mycobacterium tuberculosis. Journal of Clinical Microbiology 2002:40:988-95.

88. Cavusoglu C, Turhan A, Akinci P, et al. Evaluation of the genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis isolates. Journal of Clinical Microbiology 2006;44:2338-42.

89. Bang D, Andersen AB, Thomsen VO. Rapid geno-typic detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis directly in clinical specimens. Journal of Clinical Microbiology 2006; 44:2605-08.

90. Ruiz, M, Torres MJ, Llanos AC, et al. Direct detection of rifampin- and isoniazid-resistant Mycobac-terium tuberculosis in auramine-rhodamine-positive sputum specimens by real-time PCR. Journal of Clinical Microbiology 2004;42:1585-89.

91. Olive DM, Bean P. Principles and applications of methods for DNA-based typing of microbial organisms. Journal of Clinical Microbiology 1999;37: 1661-69.

92. Tenover FC. Bacterial strain typing through the decades: A personal reflection. In Persing DH, Tenover FC, Versalovic J, et al, eds. Molecular Microbiology. Diagnostic Principles and Practice. Washington, DC: ASM Press, 2004.

93. Tenover FC, Arbeit RD, Goering RV. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: A review for healthcare epidemiologists. Infection Control and Hospital Epidemiology 1997;18: 426-39.

94. Schaberg DR, Tompkins LS, Falkow S. Use of agarose gel electrophoresis of plasmid deoxyribonucleic acid to fingerprint gram-negative bacilli. Journal of Clinical Microbiology 1981; 13:1105-10.

95. Tenover F, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. Journal of Clinical Microbiology 1995;33:2233-39.

96. Loutit J, Tompkins S. Restriction enzyme and Southern hybridization analyses of Pseudomonas aeruginosa strains from patients with cystic fibro-sis. Journal of Clinical Microbiology 1991;29: 2897-2900.

97. Tram C, Simonet M, Nicolas MH, et al. Molecular typing of nosocomial isolates of Legionella pneu-

mophila serogroup 3. Journal of Clinical Microbiology 1990;28:242-45.

98. Riley LW. Molecular Epidemiology of Infectious Diseases. Principles and Practices. Washington, DC:ASM Press, 2004.

99. Van Embden JDA, Cave MD, Crawford JT, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: Recommendations for a standardized methodology. Journal of Clinical Microbiology 1993;31:406-409.

100. Lima P, Correia AM. Genetic fingerprinting of Brevibacterium linens by pulsed-field gel elec-trophoresis and ribotyping. Current Microbiology 2000;41:50-55.

101. Pignato S, Giammanco G, Grimont F, et al. Molecular typing of Salmonella enterica subsp. enterica serovar Wien by rRNA gene restriction patterns. Research in Microbiology 1992;143: 703-709.

102. Al Dahouk S, Tomaso H, Prenger-Berninghoff E, et al. Identification of Brucella species and biotypes using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).

Critical Reviews in Microbiology 2005;31: 191-96.

103. Stone G, Shortridge D, Flamm RK, et al. PCR-RFLP typing of ureC from Helicobacter pylori isolated from gastric biopsies during a European multi-country clinical trial. Journal of Antimicrobial Chemotherapy 1997;40:251-56.

104. Lowe A, Hanotte O, Guarino L. Standardization of molecular genetic techniques for the characterization of germ plasm collections: The case of random amplified polymorphic DNA (RAPD). Plant Genetic Resources Newsletter 1996;107:50-54.

105. Munthali M, Ford-Lloyd B-V, Newbury HJ. The random amplification of polymorphic DNA for fingerprinting plants. PCR Methods and Applications 1992;1:274-76.

106. Dijkshoorn L, Aucken H, Gerner-Smidt P, et al. Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. Journal of Clinical Microbiology 1996;34:1519-25.

107. Gibson R, Slater E, Xerry J, et al. Use of an amplified-fragment length polymorphism technique to fingerprint and differentiate isolates of

Helicobacter pylori. Journal of Clinical Microbiology 1998;36:2580-85.

108. Kremer K, Arnold C, Cataldi A, et al. Discrimina- 119. tory power and reproducibility of novel DNA typing methods for Mycobacterium tuberculosis complex strains. Journal of Clinical Microbiology 2005;43:5628-38.

109. Hulton C, Higgins CF , Sharp PM. ERIC se- 120. quences: A novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Molecular Microbiology 1991;5:825-34.

110. Versalovic J, Koeuth T, Lupski JR. Distribution of 121. repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes.

Nucleic Acids Research 1991;19:6823-31.

111. Healy M, Reece K, Walton D, et al. Identification to the species level and differentiation between strains of Aspergillus clinical isolates by auto- 122.

mated repetitive sequence-based PCR. Journal of Clinical Microbiology 2004;42:4016-24.

112. Spigaglia P, Mastrantonio P. Evaluation of repetitive element sequence-based PCR as a molecular 123. typing method for Clostridium difficile. Journal of Clinical Microbiology 2003;41:2454-57.

113. Hierro N, González A, Mas A, et al. New PCR-based methods for yeast identification. Journal of Applied Microbiology 2004;97:792-801. 124.

114. Bruns T, White TJ, Taylor JW. Fungal molecular systematics. Annual Review of Ecology 1991;22:

115. Hillis D, Dixon M. Ribosomal DNA: Molecular evolution and phylogenetic inference. Quarterly Review of Biology 1991;66:411-53.

116. Kumar M, Shukla PK. Use of PCR targeting of internal transcribed spacer regions and single-

stranded conformation polymorphism analysis of 126. sequence variation in different regions of rRNA genes in fungi for rapid diagnosis of mycotic ker-atitis. Journal of Clinical Microbiology 2005;43: 662-68.

117. Lebuhn M, Bathe S, Achouak W, et al. Comparative sequence analysis of the internal transcribed 127. spacer 1 of Ochrobactrum species. Systematic and Applied Microbiology 2005;29:265-75.

118. Sugita C, Makimura K, Uchida K, et al. PCR identification system for the genus Aspergillus and 128. three major pathogenic species: Aspergillus fumi-

gatus, Aspergillus flavus and Aspergillus niger. Medical Mycology 2004;42:433-37. Shopsin B, Gomez M, Montgomery SO, et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. Journal of Clinical Microbiology 1999;37:3556-63.

Shopsin B, Gomez M, Waddington M, et al. Use of coagulase gene (coa) repeat region nucleotide sequences for typing of methicillin-resistant Staphylococcus aureus strains. Journal of Clinical Microbiology 2000;38:3453-56. Birtles A, Hardy K , Gray SJ, et al. Multilocus sequence typing of Neisseria meningitidis directly from clinical samples and application of the method to the investigation of meningococcal disease case clusters. Journal of Clinical Microbiology 2005;43:6007-6014. Rakeman J, Bui U, Lafe K, et al. Multilocus DNA sequence comparisons rapidly identify pathogenic molds. Journal of Clinical Microbiology 2005;43: 3324-33.

Maiden M, Bygraves JA, Feil E, et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences 1998;95:3140-45. Urwin R, Maiden MC. Multilocus sequence typing: A tool for global epidemiology. Trends in Microbiology 2003;11:479-87. Scheuermann RH, Domiati-Saad R, Rogers BB. DNA virus detection. In: Persing DH, Tenover FC, Versalovic J, Wang Y-W, Unger ER, Relman DA, and White TJ, eds. Molecular Microbiology. Diagnostic Principles and Practice. ASM Press, Washington DC, 2004.

Klein RS and El Khoury J. Emerging Viral Pathogens. In: Persing DH, Tenover FC, Versalovic J, Wang Y-W, Unger ER, Relman DA, and White TJ, eds. Molecular Microbiology. Diagnostic Principles and Practice. ASM Press, Washington DC, 2004.

Hill CE and Caliendo AM. Viral Load Testing. In Persing DH, Tenover FC, Versalovic J, et al, eds. Molecular Microbiology. Diagnostic Principles and Practice. Washington, DC: ASM Press, 2004. Schupbach J. Human Immunodeficiency Viruses. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller

MA, Yolken RH. Manual of Clinical Microbiology, 8th ed. ASM Press, Washington DC, 2003.

129. Lathey, JL, Hughes MD, Fiscus SA, Pi T, Jackson JB, Rasheed S, Elbeik T, Reichman R, Japour A, D'Aquila RT, Scott W, Griffith BP, Hammer SM, Katzenstein DA, and the AIDS Clinical Trials Group Protocol 175 Team. Variability and prognostic values of virologic and CD4 cell measures in human immunodeficiency virus type 1-infectd patients with 200-500 CD4 cells/mm3 (ACTG 175). Journal of Infectious Disease 1998;177: 617-24.

130. Nolte FS, Boysza J, Thurmond C, et al. Clinical comparison of an enhanced-sensitivity branched-DNA assay and reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 RNA in plasma. Journal of Clinical Microbiology 1998;36:716-20.

131. Dyer JR, Pilcher CD, Shepard R, et al. Comparison of NucliSens and Roche Monitor assays for quantitation of levels of human immunodeficiency virus type 1 in plasma. Journal of Clinical Microbiology 1999;37:447-49.

132. Elbeik T, Charlebois E, Nassos P, et al. Quantitative and cost comparison of ultrasensitive human immunodeficiency virus type 1 RNA viral load assays: Bayer bDNA quantiplex versions 3.0 and 2.0 and Roche PCR Amplicor Monitor version 1.5. Journal of Clinical Microbiology 2000;38:1113-20.

133. Raboud J, Montaner JS, Conway B, et al. Suppression of plasma viral load below 20 copies/ml is required to achieve a long-term response to therapy. AIDS 1998;12:1619-24.

134. Saag MS, Holodniy M, Kuritzkes DR, et al. HIV viral load markers in clinical practice. Nature Medicine 1996;2:625-29.

135. Donovan RM, Bush CE, Markowitz NP, et al. Changes in virus load markers during AIDS-associated opportunistic diseases in human immunodeficiency virus-infected persons. Journal of Infectious Disease 1996;174:401-403.

136. O'Brien WA, Grovit-Ferbas K, Namazi A, et al. Human immunodeficiency virus-type 1 replication can be increased in peripheral blood of seropositive patients after influenza vaccination. Blood 1995;86:1082-89.

137. Staprans SI, Hamilton BL, Follansbee SE, et al. Activation of virus replication after vaccination of HIV-1-infected individuals. Journal of Experimental Medicine 1995;182:1727-37.

138. Hanna GJ, D'Aquila RT. Clinical use of genotypic and phenotypic drug resistance testing to monitor anti-retroviral chemotherapy. Clinical Infectious Disease. 2001;32:774-82.

139. Hirsch MS, Conway B, D'Aquila RT, et al. Antire-troviral drug resistance testing in adults with HIV-1 infection. Journal of the American Medical Association 2001;283:2417-26.

140. Caliendo AM, Yen-Lieberman B. Viral genotyping. In Persing DH, Tenover FC, Versalovic J, et al, eds. Molecular Microbiology. Diagnostic Principles and Practice. Washington, DC: ASM Press, 2004.

141. Shuhart MC, Gretch DR. Hepatitis C and G viruses. In Murray PR, Baron EJ, Jorgensen JH, et al. Manual of Clinical Microbiology, 8th ed. Washington, DC: ASM Press, 2003.

142. Lee SS, Heathcote EJ, Reddy KR, et al. Prognostic factors and early predictability of sustained viral response with peginterferon alfa-2a (40KD). Journal of Hepatology 2002;37:500-506.

143. Templeton KE, Scheltinga SA, Beersma MFet al. Rapid and sensitive method using multiplex realtime PCR for diagnosis of infections by influenza a and influenza b viruses, respiratory Syncytial virus, and Parainfluenza viruses 1, 2, 3, and 4. Journal of Clinical Microbiology 2004;42: 1564-69.

144. Hindiyeh M, Hillyard DR, Carroll KC. Evaluation of the Prodesse Hexaplex multiplex PCR assay for direct detection of seven respiratory viruses. American Journal of Clinical Pathology 2001;116: 218-24.

145. Van Burik JA, Myerson D, Schreckhise RW, et al. Panfungal PCR for detection of fungal infection in human blood specimens. Journal of Clinical Microbiology 1998;36:1169-75.

146. Petri Jr WA. Overview of the development, utility, and future of molecular diagnostics for parasitic disease. In Persing DH, Tenover FC, Versalovic J, et al, eds. Molecular Microbiology. Diagnostic Principles and Practice. Washington, DC: ASM Press, 2004.

Lela Buckingham
Lela Buckingham,

Molecular Detection of Inherited Diseases

Was this article helpful?

0 0

Post a comment