References

1. Coyle, J.T., The nagging question of the function of N-acetylaspartylglutamate. Neurobiol. of Dis. 4,

2. Neale, J.H., Bzdega, T., Wroblewska, B., N-Acetylaspartylglutamate: The most abundant peptide neurotransmitter in the mammalian central nervous system. J. Neurochem. 75, 443-452, (2000).

3. Moffett, J.R., Namboodiri, M.A.A., Cangro, C.A. and Neale, J.H. Immunohistochemical localization of

N-acetylaspartate in rat brain. Neuroreport 2, 131-134, (1991).

4. Anderson, K.J., Monaghan, D.T., Cangro, C.B., Namboodiri, M.A.A., Neale, J.H. and Cotman, C.W.,

Localization of N-acetylaspartylglutamate-like immunoreactivity in selected areas of the rat brain. Neuroscience Letters 72:14-20, (1986).

5. Williamson, L.C., Neale, J.H., Ultrastructural localization of N-acetylaspartylglutamate in synaptic vesicles of retinal neurons. Brain Res. 456, 375-381, (1988a).

6. Williamson, L.C., Neale, J.H. Calcium-dependent release of N-acetylaspartylglutamate from retinal neurons upon depolarization. Brain Res. 475, 151-155, (1988b).

7. Tsai, G., Forloni, G., Robinson, M.D., Stauch, B.L., Coyle, J.T., Calcium-dependent evoked release of N-

[3H]acetylaspartylglutamate from the optic pathway. J. Neurochem. 51, 1956-1959, (1988).

8. Tsai, G., Stauch, B.L., Vornov, J.J., Deshpande, J.K. and Coyle, J.T., Selecive release of N-acetyl-

aspartylglutamate from rat optic nerve terminals in vivo. Brain Res. 518, 313-316, (1990).

9. Sekiguchi, M., Okamoto, K., Sakai, Y., Low-concentration N-acetylaspartylglutamate suppresses the climbing fibre response of Purkinje cells in guinea pig cerebellar slices and the responses to excitatory amino acids of Xenopus laevis oocytes injected with cerebellar mRNA. Brain Res. 482, 87-96, (1989).

10. Burlina, A.P., Skaper, S.D., Rosaria Mazza, M., Ferrari, V., Leon, A., Burlina, A.B. N-

acetylaspartylglutamate selectively inhibits neuronal responses to N-methyl-D-aspartic acid in vitro. J. Neurochem. 63, 1174-1177, 1994.

11. Puttfarcken, P.F., Handen, J.S., Montgomery, D.T., Coyle, J.T., Werling, L.S., 1993. N-acetyl-

aspartylglutamate modulation of N-methyl-D-aspartate-stimulated [3H]norepinephrine release from rat hippocampal slices. J. Pharmacol. Exp. Ther. 266, 796-803.

12. Valivullah, H.M., Lancaster, J., Sweetnam, P.M., Neale, J.H., Interactions between N-

acetylaspartylglutamate and AMPA, kainate and NMDA binding sites. J. Neurochem. 63, 1714-1719, (1994).

13. Koenig, M.L., Rothbard, P.M., DeCoster, M.A., Meyerhoff, J.L., N-Acetyl-aspartyl-glutamate (NAAG)

elicits rapid increases in intraneuronal Ca2+ in vitro. Neuroreport 5, 1063-1068, (1994).

14. Cassidy, M. and Neale, J. N-acetylaspartylglutamate catabolism is achieved by an enzyme on the cell surface of neurons and glia. Neuropeptides. 24, 271-278, 1993.

15. Wroblewska, B., Wroblewski, J.T., Saab, O.H., Neale, J.H., N-Acetylaspartylglutamate inhibits forskolin-

stimulated cyclic AMP levels via a metabotropic glutamate receptor in cultured cerebellar granule cells. J. Neurochem. 61, 943-948, (1993).

16. Wroblewska, B., Wroblewski, J.T., Pshenichkin, S., Surin, A., Sullivan, S.E., Neale, J.H., N-

acetylaspartylglutamate selectively activates mGluR3 receptors in transfected cells. J. Neurochem. 69, 174-181, (1997).

17. Bruno, V., Wroblewska, B., Wroblewski, J.T., Fiore, L., Nicoletti, F., Neuroprotective activity of N-

acetylaspartylglutamate in culture cortical cells. Neurosci. 85, 751-757, (1998a).

18. Robinson, M.B., Blakely, R.D., Couto, R., Coyle, J.T., Hydrolysis of the brain dipeptide N-acetyl-L-

aspartyl-L-glutamate. Identification and characterization of a novel N-acetylated alpha-linked acidic dipeptidase activity from rat brain. J. Biol. Chem. 262, 14498-14506, (1987).

19. Miyake, M., Kakimoto, Y., Sorimachi, M., A gas chromatographic method for the determination of N-

acetyl-L-aspartic acid. N-acetyl-a-aspartylglutamic acid, and a-citryl-L-glutamic acid and their distributions in the brain and other organs of various species of animals. J. Neurochem. 36, 804-810, (1981).

20. Koller, K.J., Zaczek, R., and Coyle, J.T., N-acetyl-aspartyl-glutamate: regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method. J. Neurochem. 43, 1136-1142, (1984).

21. Ory-Lavolee, L., Blakely, R.D. and Coyle, J.T. Neurochemical and immunocytochemical studies on the distribution of N-acetylaspartyl glutamate and N-acetylaspartate in rat spinal cord and some peripheral nervous tissues. J. Neurochem. 48, 895-899, (1987).

22. Guarda, A.S.; Robinson, M.B.; Ory-Lavollee, L.; Lorloni, G.L.; Blakely, R.D.; and Coyle, J.T., Molecular

23. Blakely, R.D., Ory-Lavolee, L. and Coyle, J.T. Specific alterations in the levels of N-acetylaspartyl-

glutamate in the nervous system of the dystrophic mouse. Neuroscience Letters. 79:223-228, (1987).

24. Frondoza, C.G., Logan, S., Forloni, L. and Coyle, J.T., Production and characterization of monoclonal antibodies to N-acetylaspartylglutamate. J. Histochem. Cytochem. 38, 493-502, (1990).

25. Fuhrman, S.; Palkovits, M.; Cassidy, M.; and Neal J.H. The regional distribution of N-acetylaspartyl-

glutamate (NAAG) and peptidase activity against NAAG in the rat nervous system. J. Neurochem. 62, 275-281 (1994).

26. Riveros, N. and Orrego, F., A study of possible excitatory effects of N-acetyl-aspartylglutamate in different in vivo and in vitro brain preparations. Brain Res. 299, 393-395, (1984).

27. Blakely, R.D., Ory-Lavolee, L., Thompson, R.C. and Coyle, J.T., Synaptosomal transport of radiolabel from N-Acetyl-Aspartyl [H3] glutamate suggests a mechanism of inactivation of an excitatory neuropeptide. J. Neurochem. 47, 1013-1019, (1986).

28. Blakely, R.D., Robinson, M.B., Thompson, R.C. and Coyle, J.T., Hydrolysis of the brain dipeptide N-

acetylaspartylglutamate: subcellular and regional distribution, ontogeny and the effect of lesions on N-acetylated-alpha-linked acidic dipeptidase activity. J. Neurochem. 50, 1200-1209, (1988).

29. Berger, U.V., Luthi-Carter, R., Passani, L.,A., Elkabes, S., Black, I., Konradi, C. and Coyle, J.T.,

Glutamate carboxypeptidase II is expressed by astrocytes in the adult rat nervous system. J. Comp. Neurol. 415, 52-64, (1999).

30. Slusher, B., Tsai, G., Yoo, G., and Coyle, J.T. Immunocytochemical localization of the N-acetyl-aspartyl-

glutamate (NAAG) hydrolyzing enzyme N-acetylated alpha-linked acidic dipeptidase (NAALADase). J. Comp. Neurol. 315, 217-229, (1992).

31. Berger, U., Carter, R., McKee, M., and Coyle, J.T., N-acetylated alpa-linked acidic dipeptidase is expressed by non-myelinating Schwann cells in the peripheral nervous system. J. Neurocytol. 24:99109, (1995).

32. Koller, K.J., Coyle, J.T., Ontogenesis of N-acetyl-aspartate and N-acetyl-aspartylglutamate in rat brain.

33. Forloni, G., Grzanna, R., Blakely, R.D. and Coyle, J.T., Co-localization of N-acetylaspartyl glutamate in central cholinergic, noradrenergic and serotoninergic neurons. Synapse 1:444-460, (1987).

34. Gilberg, P., Aquilonius, S.; Eckernas, S.; Lundqvist, G.; and Winblad B. Choline acetyltransferase and substance P-like immuno-reactivity in the human spinal cord: changes in amyotrophic lateral sclerosis. Brain Res., 250:394-397 (1982).

35. Marcucci, F., Colombo, L., De Ponte, G. and Mussini, E., Decrease in N-acetylaspartic acid in brain of myodystrophic mouse. J. Neurochem. 43:1484-1486, (1984).

36. Constantakis, E. and Plaitakis, A. N-Acetylaspartate and N-Acetylaspartylglutamate are altered in the spinal cord in amyotropihic lateral sclerosis. Ann. Neurol. (abstract) 24:478, 1988.

37. Rothstein, J.D. MD, PhD; Tsai, G, MD; Kuncl, R.W. MD, PhD.; Clawson, L., RN, BSN; Cornblath, D.R.

MD; Drachman, D.B., MD; Pestronk, A., MD; Stauch, B.L., BS; and Coyle, J.T., Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol, 28:18-25, (1990).

38. Tsai, G.; Stauch-Slusher, B.; Sim, L.; Hedreen, J. C.; Rothstein, J.D.; Kuncl, R.; and Coyle, J.T.

Reductions in acidic amino acids and N-acetylaspartylglutamate in amyotrophic lateral sclerosis CNS. Brain Res., 556: 151-156, (1991).

39. Shaw, P.J; Forrest, V.; Ince, P.G.; Richardson, J.P.; and Wastell, H.J. CSF and Plasma Amino Acid

Levels in Motor Neuron Disease: Elevation of CSF Glutamate in a Subset of Patients. Neurodegeneration, 4: 209-216, (1995).

40. Rothstein, J.D. MD and Ph.D.; Martin, L.L. Ph.D.; and Kungl, R.W., MD, Ph.D. Decreased Glutamate

Transport by the Brain and Spinal Cord in Amyotrophic Lateral Sclerosis. N. Engl. J. Med., 326: 14648, (1992)

41. Tsai, G.; Cork, L.C.; Slusher, B.S.; Price, D.; and Coyle, J.T. Abnormal acidic amino acids and N-

acetylaspartylglutamate in hereditary canine motoneuron disease. Brain Res., 629, 305-309, (1993).

42. Choi, D.W. Glutamate toxicity and diseases of the nervous system. Neuron. 1, 623-634, (1988).

43. McIntosh, T.K., Smith, D.H., Meaney, D.F., Kotapka, M.J., Gennarelli, T.A., Graham, D.I., Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biochemical mechanisms. Lab. Invest. 74, 315-342, (1996).

44. McIntosh, T.K., Juhler, M., Wieloch, T., Novelpharmacologic strategies in the treatment of experimental traumatic brain injury: J. Neurotrauma 15, 731-769, (1998).

45. Olney, J.W., Labruyere, J. and Price, M.T., Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244, 1360-1362, (1989).

46. Slusher, B.S., Vornov, J.J., Thomas, A.G., Hurn, P.D., Harakuni, I., Bhardwaj, A., Traystman, R.J.,

Robinson, M.B., Britton, P., Lu, X., Tortella, F.C., Wozniak, K.M., Yudkoff, M., Potter, B.M., Jackson, P.F., Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat. Med. 5, 1396-1402, (1999).

47. Thomas, A.G., Olkowski, J.L., Slusher, B.S., Neuroprotection afforded by NAAG and NAALADase inhibition requires glial cells and metabolic glutamate receptor activation. Eur. J. Pharmacol. 426, 2326, (2001a).

48. Bruno, V., Sureda, F.X., Storto, M., Casabona, G., Caruso, A., Knopfel, T., Kuhn, R., Nicoletti, F., The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J. Neurosci. 17, 1891-1897, (1997).

49. Bruno, V., Battaglia, G., Casabona, G., Copani, A., Caciagli, F., Nicoletti, F., Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta. J. Neurosci. 18, 9594-9600, (1998b).

50. Hacker, H.D., Yourick, D.L., Koenig, M.L., Slusher, B.S. and Meyerhoff, J.L., Neuroprotection in rabbit retina with N-acetylaspartylglutamate and 2-phosphonyl-methyl pentanedioic acid. In (Eds. B.Stuck & M. Belkin) Laser and noncoherent light ocular effects: epidemiology, prevention and treatment III. Proceedings of Ophthalmic Technologies IX. 3591:422-429, (1999).

51. Tortella, F.C., Lin, Y., Ved, H., Slusher, B.S., Dave, J.R. 2000. Neuroprotection produced by the

NAALADase inhibitor 2-PMPA in rat cerebellar neurons. Eur. J. Pharmacol. 402, 31-37.

52. Thomas, A.G., Liu, W., Olkowski, J.L., Tang, Z., Lin, Q., Lu, X.-C.M., Slusher, B.S. Neuroprotection mediated by glutamate carboxypeptidase II (NAALADase) inhibition requires TGF-ß. Eur. J. Pharmacol. 430, 33-40, (2001b).

53. Ghadge, G., Slusher, B.S., Bodner, A., Del Canto, M., Wozniak, K., Thomas, A., Rojas, C., Tsukamoto,

T., Majer, P., Miller, R., Monti, A. and Roos, R. Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models. PNAS 100(16): 9554-9559, (2003).

54. Nan, F., Bzdega, T., Pshenichkin, S., Wroblewski, J.T., Wroblewska, B., Neale, J.H. Dual function glutamate-related ligands: discovery of a novel, potent inhibitor of glutamate carboxypeptidase II possessing mGluR3 agonist activity. J. Med. Chem. 43, 772-774, (2000).

55. B. Slusher (personal communication).

56. Wozniak, K., Callizot, N., Poindron, P. and Slusher, B. NAALADase inhibition enhances behavioral and morphological recovery following sciatic nerve crush in mice. Neurosci. Abs., 26, 111, (2000).

57. Faden, A.I., Jacobs, T.P., Dynorphin-related peptides cause motor dysfunction in the rat through a non opiate mechanism. Br. J. Pharmacol. 81, 271-276, 1984.

58. Long, J.B., R.C. Kinney, D.S. Malcolm, Graeber, G.S., Holaday, J.W., Intrathecal dynorphin A (1-13) and dynorphin A (3-13) reduce rat spinal cord blood flow by non-opioid mechanisms. Brain Res. 436, 374379, (1987).

59. Long, J.B., J.M. Petras, W.C. Mobley, Holaday, J.W., Neurological dysfunction following intrathecal injection of dynorphin A (1-13) in the rat: II. non-opioid mechanisms mediate loss of motor, sensory, and autonomic function. J. Pharmacol. Exp. Ther. 246, 1167-1174, (1988)

60. Long, J.B., Spinal subarachnoid injection of somatostatin causes neurological deficits and neuronal injury in rats. Eur. J. Pharmacol. 149, 287-296, (1988).

61. Long, J.B., Rigamonti, D.D., Dosaka, K., Kraimer, J.M., Martinez-Arizala, A., Somatostatin causes vasoconstriction, reduces blood flow and increases vascular permeability in the rat central nervous system. J. Pharmacol. Exp. Ther. 260, 1425-1432, (1992).

62. Long, J.B., D.D. Rigamonti, M.A. Oleshansky, C.P. Wingfield, Martinez-Arizala, A., Dynorphin A-

induced rat spinal cord injury: evidence for excitatory amino acid involvement in a pharmacological model of ischemic spinal cord injury. J. Pharmacol. Exp. Ther. 269, 358-366, (1994a).

63. Long, J.B., Skolnick, P.P., 1-aminocyclopropanecarboxylic acid protects against dynorphin A-induced spinal injury. Eur. J. Pharmacol. 261, 295-301, (1994b).

64. Bakshi, R., Faden, A.I., Competitive and non-competitive NMDA antagonists limit dynorphin A-induced rat hindlimb paralysis. Brain Res. 507, 1-5, (1990a).

65. Bakshi, R., Faden, A.I., Blockade of the glycine modulatory site of the NMDA receptors modifies dynorphin-induced behavioral effects. Neurosci. Lett. 110, 113-117, (1990b).

66. Caudle, R.M. Isaac, L., A novel interaction between dynorphin (1-13) and an N-methyl-D-aspartate site.

67. Robinson M.B., Djali S., and Buchhalter J. R., Inhibition of glutamate uptake with L-trans-pyrrolidine-2,4-

dicarboxylate potentiates glutamate toxicity in primary hippocampal cultures. J. Neurochem. 61, 20992103, (1993).

68. Long, J.B. Meyerhoff J.L. and Slusher B.S., NAALADase inhibition protects against dynorphin A-

induced ischemic spinal cord injury in rats. Neurosci. Abs. 23:2301, (1997).

69. Long, J.B., Yourick, D.L., Slusher, B.S., Robinson, M.B., and Meyerhoff, J.L. Inhibition of glutamate carboxypeptidase II (NAALADase) protects against dynorphin A-induced ischemic spinal cord injury in rats. Eur. J. Pharmacol. (in press, 2005).

70. Yourick, D.L., Koenig, M.L., Durden, A.V. and Long, J.B. N-Acetylaspartylglutamate and beta-NAAG

protect against injury induced by NMDA and hypoxia in primary spinal cord cultures. Brain Res. 99156-64, (2003).

71. Long, J.B., Yourick, D.L and Meyerhoff, J.L., N-Acetylaspartylglutamate (NAAG) protects against dynorphin A-induced ischemic spinal cord injury in rats. Neurosci. Abs. 24:463, (1998).

72. Lea, P.M., Wroblewska, B., Sarvey, J.M. and Neale, J.H. beta-NAAG rescues LTP from blockade by

NAAG in rat dentate gyrus via the type 3 metabotropic glutamate receptor. J. Neurophysiol. 85,10971106, (2001).

73. Koller KJ, Coyle JT. The characterization of the specific binding of [3H]-N-acetylaspartylglutamate to rat brain membranes, JNeurosci. 5(11), 2882-8, (1985).

74. Losi, G., Vicini, S. and Neale, J. NAAG fails to antagonize synaptic and extrasynaptic NMDA receptors in cerebellar granule cells. Neuropharmacology. 46:490-496, 2004.

75. Bergeron, R., Coyle, J.T., Tsai, G. and Greene, R.W. NAAG reduces NMDA receptor current in CA1

hippocampal pyramidal neurons of acute slices and dissociated neurons. Neuropsycholopharm. 1-10, (2004).

76. Wroblewska, B., Santi, M.R., Neale, J.H., N-Acetylaspartylglutamate activates cyclic-AMP coupled metabotropic glutamate receptors in cerebellar cells. Glia 24, 172-180, (1998).

77. Schoepp, D.D., Conn, P.J., Metabotropic glutamate receptors in brain function and pathology. Trends

78. Buisson, A. Choi, D.W., The inhibitory mGluR agonist, s-4-carboxy-3-hydroxy-phenylglycine selectively attenuates NMDA neurotoxicity and oxygen-glucose deprivation-induced neuronal death. Neuropharmacol. 34, 1081-1087, (1995).

79. Sanchez-Prieto, J., Budd, D.C., Herrero, I., Vazquez, E., Nicholls, D.G., Presynaptic receptors and the control of glutamate exocytosis. Trends Neurosci. 19, 235-239, (1996).

Was this article helpful?

0 0

Post a comment