The Peripheral Neuropathy Solution

Peripheral Neuropathy Solution By Dr. Randall Labrum

Get Instant Access

The field of neuroprosthetics today is in its infancy. Currently, research is only beginning to crack the electrical information encoding the information in a human's thoughts. Despite the field's youth, early advances have already demonstrated that these platforms can be utilized to significantly enhance an impaired user's ability to interact with his/her environment. Each of the reviewed signal platforms has the potential to substantively improve the manner in which patients with spinal cord injury, stroke, cerebral palsy, and neuromuscular disorders communicate with their world. Each platform also has distinctive barriers that it will need to overcome. For the population signal platforms of EEG and ECoG, increasing the complexity of control is critical; while for single-unit platforms, demonstrating chronic implant durability is of central concern. Given the rapid progression of these technologies over the past five to seven years and the concomitant swift ascent of computer processing speeds, signal analysis techniques, and emerging ideas for novel biomaterials, these issues should not be viewed as obstacles, but rather as milestones that will be achieved. The order in which these milestones will be accomplished remains to be seen. As research in this field begins to transition from basic research to one of clinical application, it will herald in a new era of restorative neurosurgery. Through neurosurgical intervention, the ability will exist to restore function that today is unrecoverable. In the future, a neurosurgeon's capabilities will go beyond the ability to remove offending agents such as aneurysms, tumors, and hematomas to prevent the decrement of function. Rather, he or she will also have the skills and technologies in their clinical armamentarium to engage the nervous system to restore abilities that have already been lost.


1. Andersen, R.A., Burdick, J.W., Musallam, S., Pesaran, B., and Cham, J.G. Cognitive neural prosthetics. Trends Cogn. Sci., 8:486-493, 2004.

2. Birbaumer, N., Ed. Slow Cortical Potentials: Their Origin, Meaning, and Clinical Use. Tilburg: Tilburg University Press, 1997.

3. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kubler, A., Perelmouter, J., Taub, E., and Flor, H. A spelling device for the paralysed. Nature, 398:297-298, 1999.

4. Birbaumer, N., Kubler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser, J., Iversen, I., Kotchoubey, B., Neumann, N., and Flor, H. The thought translation device (TTD) for completely paralyzed patients. IEEE Trans. Rehabil. Eng., 8:190-193, 2000.

5. Boulton, A.A., Baker, G.B., and Vanderwolf, C.H., Eds. Neurophysiological Techniques: Applications to Neural Systems. Totowa: Humana Press, 1990.

6. Brown, J.A. and Barbaro, N.M. Motor cortex stimulation for central and neuropathic pain: current status. Pain, 104:431-435, 2003.

7. Brown, J.A. and Pilitsis, J.G. Motor cortex stimulation for central and neuropathic facial pain: a prospective study of 10 patients and observations of enhanced sensory and motor function during stimulation. Neurosurgery, 56:290-297; discussion 290-297, 2005.

8. Bullara, L.A., Agnew, W.F., Yuen, T.G., Jacques, S., and Pudenz, R.H. Evaluation of electrode array material for neural prostheses. Neurosurgery, 5:681-686, 1979.

9. Crone, N.E., Boatman, D., Gordon, B., and Hao, L. Induced electrocorticographic gamma activity during auditory perception. Brazier Award-winning article, 2001. Clin. Neurophysiol., 112:565-582, 2001.

10. Crone, N.E. Hao, L., Hart, J., Jr., Boatman, D., Lesser, R.P., Irizarry, R., and Gordon, B. Electro-corticographic gamma activity during word production in spoken and sign language. Neurology, 57:2045-2053, 2001.

11. Crone, N.E., Miglioretti, D.L., Gordon, B., and Lesser, R.P. Functional mapping of human sen-sorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain, 121(Pt. 12):2301-2315, 1998.

12. Donchin, E. and Smith, D.B. The contingent negative variation and the late positive wave of the average evoked potential. Electroencephalogr. Clin. Neurophysiol., 29:201-203, 1970.

13. Donchin, E., Spencer, K.M., and Wijesinghe, R. The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehabil. Eng., 8:174-179, 2000.

14. Duncan, D.E. Implanting Hope. Technol. Rev., February 2005.

15. Elbert, T., Rockstroh, B., Lutzenberger, W., and Birbaumer, N. Biofeedback of slow cortical potentials. I. Electroencephalogr. Clin. Neurophysiol., 48:293-301, 1980.

16. Farwell, L.A. and Donchin, E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol., 70:510-523, 1988.

17. Fetz, E.E. and Finocchio, D.V. Operant conditioning of specific patterns of neural and muscular activity. Science, 174:431-435, 1971.

18. Fisch, B.J., Pedley, T.A., and Keller, D.L. A topographic background symmetry display for comparison with routine EEG. Electroencephalogr. Clin. Neurophysiol., 69:491-494, 1988.

19. Freeman, W.J., Holmes, M.D., Burke, B.C., and Vanhatalo, S. Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol., 114:1053-1068, 2003.

20. Gastaut, H. [Electrocorticographic study of the reactivity of rolandic rhythm]. Rev. Neurol. (Paris), 87:176-182, 1952.

21. Georgopoulos, A.P., Schwartz, A.B., and Kettner, R.E. Neuronal population coding of movement direction. Science, 233:1416-1419, 1986.

22. Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., and Donoghue, J.P. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442:164-171, 2006.


24. Huggins, J.E., Levine, S.P., BeMent, S.L., Kushwaha, R.K., Schuh, L.A., Passaro, E.A., Rohde, M.M., Ross, D.A., Elisevich, K.V., and Smith, B.J. Detection of event-related potentials for development of a direct brain interface. J. Clin. Neurophysiol., 16:448-455, 1999.

25. Kennedy, P.R., Andeasen, D., Wright, E.J., Mao, H., and Ehirim, P. Towards conversational speech restoration in a locked-in patient recording from Brocas area with the neurotrophic electrode. Presented at Society for Neuroscience, Washington, D.C., 2005.

26. Kennedy, P.R. and Bakay, R.A. Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport, 9:1707-1711, 1998.

27. Kostov, A. and Polak, M. Parallel man-machine training in development of EEG-based cursor control. IEEE Trans. Rehabil. Eng., 8:203-205, 2000.

28. Kozelka, J.W. and Pedley, T.A. Beta and mu rhythms. J. Clin. Neurophysiol., 7:191-207, 1990.

29. Kubler, A., Neumann, N., Kaiser, J., Kotchoubey, B., Hinterberger, T., and Birbaumer, N.P. Brain-computer communication: self-regulation of slow cortical potentials for verbal communication. Arch. Phys. Med. Rehabil, 82:1533-1539, 2001.

30. Kubler, A., Nijboer, F., Mellinger, J., Vaughan, T.M., Pawelzik, H., Schalk, G., McFarland, D.J., Birbaumer, N., and Wolpaw, J.R. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64:1775-1777, 2005.

31. Laubach, M., Wessberg, J., and Nicolelis, M.A. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task. Nature, 405:567-571, 2000.

32. Leuthardt, E.C., Miller, K.J., Schalk, G., Rao, R.N., and Ojemann, J.G. Electrocorticography-Based Brain Computer Interface - The Seattle Experience. IEEE - Neural Syst. Rehabil. Eng., 2005.

33. Leuthardt, E.C., Schalk, G., Moran, D., and Ojemann, J.G. The emerging world of motor neuro-prosthetics: a neurosurgical perspective. Neurosurgery, 59:1-14; discussion 11-14, 2006.

34. Leuthardt, E.C., Schalk, G., Wolpaw, J.R., Ojemann, J.G. and Moran, D.W. A brain-computer interface using electrocorticographic signals in humans. J. Neural. Eng., 1:63-71, 2004.

35. Levine, S.P., Huggins, J.E., BeMent, S.L., Kushwaha, R.K., Schuh, L.A., Passaro, E.A., Rohde, M.M., and Ross, D.A., Identification of electrocorticogram patterns as the basis for a direct brain interface. J. Clin. Neurophysiol., 16:439-447, 1999.

36. Levine, S.P., Huggins, J.E., BeMent, S.L., Kushwaha, R.K., Schuh, L.A., Rohde, M.M., Passaro, E.A., Ross, D.A., Elisevich, K.V., and Smith, B.J., A direct brain interface based on event-related potentials. IEEE Trans. Rehabil. Eng., 8:180-185, 2000.

37. Loeb, G.E., Walker, A.E., Uematsu, S., and Konigsmark, B.W., Histological reaction to various conductive and dielectric films chronically implanted in the subdural space. J. Biomed. Mater. Res., 11:195-210, 1977.

38. Lopes da Silva, F.H. and Pfurtscheller, G., Eds. Event-Related Desynchronization. Handbook of Electroencephalography and Clinical Neurophysiology. Elsevier, Amsterdam, Elsevier, 1999.

39. Margalit, E., Weiland, J.D., Clatterbuck, R.E., Fujii, G.Y., Maia, M., Tameesh, M., Torres, G., D'Anna, S.A., Desai, S., Piyathaisere, D.V., Olivi, A., de Juan, E., Jr., and Humayun, M.S. Visual and electrical evoked response recorded from subdural electrodes implanted above the visual cortex in normal dogs under two methods of anesthesia. J. Neurosci. Methods, 123:129-137, 2003.

40. McFarland, D.J., Miner, L.A., Vaughan, T.M., and Wolpaw, J.R. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr., 12:177-186, 2000.

41. McFarland, D.J., Sarnacki, W.A., and Wolpaw, J.R. EEG-based two-dimensional movement and target selection by a non-invasive brain-computer interface in humans: emulating full mouse control. Presented at Society for Neuroscience, Washington D.C., November 12, 2005.

42. Moran, D.W. and Schwartz, A.B. Motor cortical representation of speed and direction during reaching. J. Neurophysiol., 82:2676-2692, 1999.

43. Nguyen, J.P., Lefaucher, J.P., Le Guerinel, C., Eizenbaum, J.F., Nakano, N., Carpentier, A., Brugieres, P., Pollin, B., Rostaing, S., and Keravel, Y. Motor cortex stimulation in the treatment of central and neuropathic pain. Arch. Med. Res., 31:263-265, 2000.

44. Niedermeyer, E. and Lopes da Silva, F.H. The Normal EEG of the Waking Adult. Baltimore: Williams and Wilkins, 1999.

45. Pfurtscheller, G. and Cooper, R. Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalogr. Clin. Neurophysiol., 38:93-96, 1975.

46. Pfurtscheller, G., Flotzinger, D., and Kalcher, J. Brain-computer interface — a new communication device for handicapped persons. J. Microcomp. App., 16:293-299, 1993.

47. Pfurtscheller, G., Graimann, B., Huggins, J.E., Levine, S.P., and Schuh, L.A. Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin. Neurophysiol., 114:1226-1236, 2003.

48. Pfurtscheller, G., Guger, C., Muller, G., Krausz, G., and Neuper, C. Brain oscillations control hand orthosis in a tetraplegic. Neurosci. Lett., 292:211-214, 2000.

49. Pfurtscheller, G. and Neuper, C. Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett., 239:65-68, 1997.

50. Pfurtscheller, G., Neuper, C., Guger, C., Harkam, W., Ramoser, H., Schlogl, A., Obermaier, B., and Pregenzer, M. Current trends in Graz Brain-Computer Interface (BCI) research. IEEE Trans. Rehabil. Eng., 8:216-219, 2000.

51. Pierce, J.R. An Introduction to Information Theory. New York: Dover Press, 1980.

52. Rockstroh, B., Elbert, T., and Canavan, A., Lutzenberger, W., Birbaumer, N. Slow Cortical Potentials and Behavior. Baltimore: Urban & Schwarzenberg, 1989.

53. Rohde, M.M., BeMent, S.L., Huggins, J.E., Levine, S.P., Kushwaha, R.K., and Schuh, L.A. Quality estimation of subdurally recorded, event-related potentials based on signal-to-noise ratio. IEEE Trans. Biomed. Eng., 49:31-40, 2002.

54. Schalk, G., Leuthardt, E.C., Moran, D., Ojemann, J., and Wolpaw, J.R. Two-dimensional cursor control using electrocorticographic signals in humans. Presented at Society for Neuroscience, San Diego, October 23, 2004.

55. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., and Wolpaw, J.R. BCI2000: a generalpurpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng., 51:1034-1043, 2004.

56. Schwartz, A.B. Direct cortical representation of drawing. Science, 265:540-542, 1994.

57. Serruya, M.D., Caplan, A.H., Saleh, M., Morris, D.S., and Donoghue, J.P. The BrainGate pilot trial: building and testing a novel direct neural output for patients with severe motor impairments. Presented at Society for Neuroscience, San Diego, CA, 2004.

58. Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., and Donoghue, J.P. Instant neural control of a movement signal. Nature, 416:141-142, 2002.

59. Shain, W., Spataro, L., Dilgen, J., Haverstick, K., Retterer, S., Isaacson, M., Saltzman, M., and Turner, J.N. Controlling cellular reactive responses around neural prosthetic devices using peripheral and local intervention strategies. IEEE Trans. Neural Syst. Rehabil. Eng., 11:186-188, 2003.

60. Sinai, A., Bowers, C.W., Crainiceanu, C.M., Boatman, D., Gordon, B., Lesser, R.P., Lenz, F.A., and Crone, N.E. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain, 128:1556-1570, 2005.

61. Srinivasan, R., Nunez, P.L., and Silberstein, R.B. Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Trans. Biomed. Eng., 45:814-826, 1998.

62. Sutter, E.E. The brain response interface: communication through visually-induced electrical brain responses. J. Microcomp. App., 15:31-45, 1992.

63. Sutton, S., Braren, M., Zubin, J., and John, E.R. Evoked-potential correlates of stimulus uncertainty. Science, 150:1187-1188, 1965.

64. Szarowski, D.H., Andersen, M.D., Retterer, S., Spence, A.J., Isaacson, M., Craighead, H.G., Turner, J.N., and Shain, W. Brain responses to micro-machined silicon devices. Brain Res., 983:23-35, 2003.

65. Taylor, D.M., Tillery, S.I., and Schwartz, A.B. Direct cortical control of 3D neuroprosthetic devices. Science, 296:1829-1832, 2002.

66. Vetter, R.J., Williams, J.C., Hetke, J.F., Nunamaker, E.A., and Kipke, D.R. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans. Biomed. Eng., 51:896-904, 2004.

67. Vidal, J.J. Real-time detection of brain events in EEG. IEEE Proc. Spec. Issue Biological Signal Process. Anal., 65:633-664, 1977.

68. Vossler, D.D., Goodman, R., Hirsch, L., Young, J., and Kraemer, D. Early safety experience with a fully implanted intracranial responsive neurostimulator for epilepsy. Presented at Annual Meeting of the American Epilepsy Society (AES), New Orleans, LA, December 2004.

69. Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., and Nicolelis, M.A. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature, 408:361-365, 2000.

70. Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H. Schalk, G., Donchin, E, Quatrano, L.A., Robinson, C.J., and Vaughan, T.M. Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng., 8:164-173, 2000.

71. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., and Vaughan, T.M. Brain-computer interfaces for communication and control. Clin. Neurophysiol., 113:767-791, 2002.

72. Wolpaw, J.R. and McFarland, D.J. Multichannel EEG-based brain-computer communication. Electroencephalogr. Clin. Neurophysiol., 90:444-449, 1994.

73. Wolpaw, J.R. and McFarland, D.J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci., U.S.A., 101:17849-17854, 2004.

74. Wolpaw, J.R., McFarland, D.J., Neat, G.W., and Forneris, C.A. An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol., 78:252-259, 1991.

75. Wolpaw, J.R., McFarland, D.J., Vaughan, T.M., and Schalk, G. The Wadsworth Center Brain-Computer Interface (BCI) Research and Development Program. IEEE Trans. Neural. Syst. Rehabil. Eng., 11:204-207, 2003.

76. Yuen, T.G., Agnew, W.F., and Bullara, L.A. Tissue response to potential neuroprosthetic materials implanted subdurally. Biomaterials, 8:138-141, 1987.

Was this article helpful?

0 0
Peripheral Neuropathy Natural Treatment Options

Peripheral Neuropathy Natural Treatment Options

This guide will help millions of people understand this condition so that they can take control of their lives and make informed decisions. The ebook covers information on a vast number of different types of neuropathy. In addition, it will be a useful resource for their families, caregivers, and health care providers.

Get My Free Ebook

Post a comment